-
Notifications
You must be signed in to change notification settings - Fork 4
/
matched_filter.py
237 lines (222 loc) · 9.86 KB
/
matched_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
from scipy import interpolate
import spectral_distortions as sd
import foregrounds as fg
import fisher
from cov_project import cov_inv
import matplotlib
from cycler import cycler
matplotlib.rcParams['axes.prop_cycle'] = cycler(color=['#2424f0','#df6f0e','#3cc03c','#d62728','#b467bd','#ac866b','#e397d9','#9f9f9f','#ecdd72','#77becf'])
matplotlib.use('pdf')
matplotlib.rc('font', family='serif', serif='cm10')
matplotlib.rc('text', usetex=True)
fontProperties = {'family':'sans-serif',
'weight' : 'normal', 'size' : 16}
import matplotlib.pyplot as plt
"""
try a matched filter approach for detecting \mu
"""
# frequency specifications
nu_min = 7.5e9 #7.5e9 (PIXIE)
nu_max = 3000.e9 #3000.e9 (PIXIE)
nu_step = 15.e9 #15.e9 (PIXIE)
fac = 1. #multiplicative scaling of PIXIE noise
fac *= (15.e9/nu_step) #account for multiplicative noise scaling with bin width
#fish = fisher.FisherEstimation(fmin=nu_min, fmax=nu_max, fstep=nu_step, duration=dur, mult=fac, bandpass=False, fsky=1.)
mu_fid = 2.e-8
mu_norm = 1. #for getting mu SED shape only
# use default PIXIE for now
fish = fisher.FisherEstimation(fmin=nu_min, fmax=nu_max, fstep=nu_step, mult=fac, bandpass=True, fsky=0.7)
freqs = fish.center_frequencies
fish.set_signals(fncs=[sd.DeltaI_mu])
# signal template shape
I_mu = fish.measure_signal(mu_amp=mu_norm)
# instrumental noise
noise_PIXIE = fish.pixie_sensitivity()
noise_superPIXIE = np.copy(noise_PIXIE)
noise_superPIXIE[0:7] *= 0.1
# noise covariance
# instrumental noise is diagonal
N_noise = np.diag(noise_PIXIE**2.)
#N_noise = np.diag(noise_superPIXIE**2.)
# CMB blackbody
fish.set_signals(fncs=[sd.DeltaI_DeltaT])
I_CMB = fish.measure_signal(DeltaT_amp=1.2e-5) #true CV = 1.2e-5; our old assumed made-up value was 1.2e-4
N_CMB = np.outer(I_CMB,I_CMB)
I_CMB_pert = fish.measure_signal(DeltaT_amp=1.2e-4) #for testing responses
# mu -- should this be included? not obvious to me
fish.set_signals(fncs=[sd.DeltaI_mu])
I_mu_true = fish.measure_signal(mu_amp=mu_fid)
N_mu = np.outer(I_mu_true,I_mu_true)
# Compton-y
fish.set_signals(fncs=[sd.DeltaI_y])
I_y = fish.measure_signal(y_tot=1.77e-6)
N_y = np.outer(I_y,I_y)
# rtSZ -- includes both Compton-y + relativistic corrections, so don't add N_y and N_rtSZ together (only one at a time)
fish.set_signals(fncs=[sd.DeltaI_reltSZ_2param_yweight])
I_rtSZ = fish.measure_signal(y_tot=1.77e-6, kT_yweight=1.245)
N_rtSZ = np.outer(I_rtSZ,I_rtSZ) #I've checked that multiplying or dividing this by values up to 1.e7 has no effect on mu SNR (in a CMB+rtSZ-only calculation)
I_rtSZ_pert = fish.measure_signal(y_tot=1.77e-6, kT_yweight=1.245 *2.) #for testing responses
# Galactic dust
fish.set_signals(fncs=[fg.thermal_dust_rad])
I_dust = fish.measure_signal(Ad=1.36e6, Bd=1.53, Td=21.)
N_dust = np.outer(I_dust,I_dust)
I_dust_pert = fish.measure_signal(Ad=1.36e6, Bd=1.54, Td=21.) #for testing responses
# CIB
fish.set_signals(fncs=[fg.cib_rad])
I_CIB = fish.measure_signal(Acib=3.46e5, Bcib=0.86, Tcib=18.8)
N_CIB = np.outer(I_CIB,I_CIB)
I_CIB_pert = fish.measure_signal(Acib=3.46e5, Bcib=0.87, Tcib=18.8) #for testing purposes
# CO
fish.set_signals(fncs=[fg.co_rad])
I_CO = fish.measure_signal(Aco=1.)
N_CO = np.outer(I_CO,I_CO)
# free-free
fish.set_signals(fncs=[fg.jens_freefree_rad])
I_ff = fish.measure_signal(EM=300.)
N_ff = np.outer(I_ff,I_ff)
# synchrotron
fish.set_signals(fncs=[fg.jens_synch_rad])
I_synch = fish.measure_signal(As=288., alps=-0.82, w2s=0.2)
N_synch = np.outer(I_synch,I_synch)
I_synch_pert = fish.measure_signal(As=288., alps=-0.83, w2s=0.2) #for testing purposes
# AME
fish.set_signals(fncs=[fg.spinning_dust])
I_AME = fish.measure_signal(Asd=1.)
N_AME = np.outer(I_AME,I_AME)
# sum all contributions
labels = ['noise',
'noise+CMB',
'noise+CMB+y/rtSZ',
'noise+CMB+y/rtSZ+synch',
'noise+CMB+y/rtSZ+synch+ff',
'noise+CMB+y/rtSZ+synch+ff+AME',
'noise+CMB+y/rtSZ+synch+ff+AME+CO',
'noise+CMB+y/rtSZ+synch+ff+AME+CO+CIB',
'noise+CMB+y/rtSZ+synch+ff+AME+CO+CIB+dust']
N_vec = np.array([N_noise,
N_noise + N_CMB,
N_noise + N_CMB + N_rtSZ,
N_noise + N_CMB + N_rtSZ + N_synch,
N_noise + N_CMB + N_rtSZ + N_synch + N_ff,
N_noise + N_CMB + N_rtSZ + N_synch + N_ff + N_AME,
N_noise + N_CMB + N_rtSZ + N_synch + N_ff + N_AME + N_CO,
N_noise + N_CMB + N_rtSZ + N_synch + N_ff + N_AME + N_CO + N_CIB,
N_noise + N_CMB + N_rtSZ + N_synch + N_ff + N_AME + N_CO + N_CIB + N_dust])
I_arr_vec = np.array([[I_mu],
[I_mu,I_CMB],
[I_mu,I_CMB,I_rtSZ],
[I_mu,I_CMB,I_rtSZ,I_synch],
[I_mu,I_CMB,I_rtSZ,I_synch,I_ff],
[I_mu,I_CMB,I_rtSZ,I_synch,I_ff,I_AME],
[I_mu,I_CMB,I_rtSZ,I_synch,I_ff,I_AME,I_CO],
[I_mu,I_CMB,I_rtSZ,I_synch,I_ff,I_AME,I_CO,I_CIB],
[I_mu,I_CMB,I_rtSZ,I_synch,I_ff,I_AME,I_CO,I_CIB,I_dust]])
#N = N_noise + N_CIB + N_dust
#N = N_noise + N_synch + N_ff + N_AME + N_CO + N_CMB + N_rtSZ
#N = N_noise + N_CMB + N_rtSZ + N_dust + N_CIB + N_CO + N_ff + N_synch + N_AME
# matched filter noise rms on signal amplitude
def sigma_MF(temp,N_cov): #temp=template SED, N_cov=cov matrix
assert N_cov.shape[0] == N_cov.shape[1]
assert N_cov.shape[0] == len(temp)
N_cov_inv = np.linalg.inv(N_cov) #caution...
#print np.amax( np.absolute( np.inner(N_cov,N_cov_inv) - np.identity(len(temp)) ) )
return 1. / np.sqrt(np.dot( np.dot(temp,N_cov_inv), temp ))
# matched filter noise rms on signal amplitude -- handle difficult cov matrix inversion with mode deprojection technique
def sigma_MF_alt(temp,N_cov): #temp=template SED, N_cov=cov matrix
assert N_cov.shape[0] == N_cov.shape[1]
assert N_cov.shape[0] == len(temp)
#N_cov_inv = np.linalg.inv(N_cov) #caution...
[N_cov_inv, N_deproj] = cov_inv(N_cov,len(temp))
#print np.amax( np.absolute( np.inner(N_cov,N_cov_inv) - np.identity(len(temp)) ) ), N_deproj
return 1. / np.sqrt(np.dot( np.dot(temp,N_cov_inv), temp ))
#mu_SNR_noiseonly = mu_fid / sigma_MF(I_mu, N_noise)
#print mu_SNR_noiseonly
#mu_SNR = mu_fid / sigma_MF(I_mu, N)
#print mu_SNR
#quit()
# matched filter weights
def w_MF(temp,N_cov):
assert N_cov.shape[0] == N_cov.shape[1]
assert N_cov.shape[0] == len(temp)
N_cov_inv = np.linalg.inv(N_cov) #caution...
return np.dot(temp,N_cov_inv) / np.dot( np.dot(temp,N_cov_inv), temp )
# matched filter weights -- handle difficult cov matrix inversion with mode deprojection technique
def w_MF_alt(temp,N_cov):
assert N_cov.shape[0] == N_cov.shape[1]
assert N_cov.shape[0] == len(temp)
#N_cov_inv = np.linalg.inv(N_cov) #caution...
[N_cov_inv, N_deproj] = cov_inv(N_cov,len(temp))
return np.dot(temp,N_cov_inv) / np.dot( np.dot(temp,N_cov_inv), temp )
# noise check, given weights
def sigma_MF_check(w,N_cov):
return np.sqrt( np.dot( np.dot(w,N_cov), w) )
# response of weights to some component
def MF_resp(w,temp):
return np.dot(w,temp)
# weighted least-squares linear regression weights, for comparison
def w_LR(I_arr, N_n):
N_noise_inv = np.linalg.inv(N_n)
N_comp = len(I_arr)
# build C_ab matrix
C_ab = np.zeros((N_comp,N_comp))
for a in range(N_comp):
for b in range(a,N_comp):
C_ab[a][b] = np.dot( np.dot(I_arr[a],N_noise_inv), I_arr[b])
if b!=a:
C_ab[b][a] = C_ab[a][b]
# invert
C_ab_inv = np.linalg.inv(C_ab)
# compute weights -- this is a matrix with weights for each component in I_arr
return np.dot( C_ab_inv, np.dot(I_arr, N_noise_inv) )
# results
num_N = len(N_vec)
sigma_MF_vec = np.zeros(num_N)
mu_SNR_vec = np.zeros(num_N)
sigma_MF_alt_vec = np.zeros(num_N)
mu_SNR_alt_vec = np.zeros(num_N)
sigma_MF_check_vec = np.zeros(num_N)
mu_SNR_check_vec = np.zeros(num_N)
plt.clf()
plt.xlim(nu_min/1.e9,nu_max/1.e9)
#plt.ylim()
plt.xlabel(r'$\nu \, [{\rm GHz}]$',fontsize=17)
plt.ylabel(r'$w(\nu) \, [({\rm Jy/sr})^{-1}]$',fontsize=17)
plt.grid(alpha=0.5)
for i in range(num_N):
print "---------------------------------"
print i,labels[i]
sigma_MF_vec[i] = sigma_MF(I_mu, N_vec[i])
sigma_MF_alt_vec[i] = sigma_MF_alt(I_mu, N_vec[i])
mu_SNR_vec[i] = mu_fid / sigma_MF_vec[i]
mu_SNR_alt_vec[i] = mu_fid / sigma_MF_alt_vec[i]
weights = w_MF(I_mu, N_vec[i])
sigma_MF_check_vec[i] = sigma_MF_check(weights,N_vec[i])
mu_SNR_check_vec[i] = mu_fid / sigma_MF_check_vec[i]
print "SNR:",mu_SNR_vec[i],mu_SNR_alt_vec[i],mu_SNR_check_vec[i]
print "resp (mu):",MF_resp(weights,I_mu_true)
print "resp (CMB):",MF_resp(weights,I_CMB)
#print "resp (CMB perturbed):",MF_resp(weights,I_CMB_pert)
#print "resp (y):",MF_resp(weights,I_y)
print "resp (rtSZ):",MF_resp(weights,I_rtSZ)
print "resp (rtSZ perturbed):",MF_resp(weights,I_rtSZ_pert)
print "resp (dust):",MF_resp(weights,I_dust)
print "resp (dust perturbed):",MF_resp(weights,I_dust_pert)
print "resp (CIB):",MF_resp(weights,I_CIB)
print "resp (CIB perturbed):",MF_resp(weights,I_CIB_pert)
print "resp (CO):",MF_resp(weights,I_CO)
print "resp (ff):",MF_resp(weights,I_ff)
print "resp (AME):",MF_resp(weights,I_AME)
print "resp (synch):",MF_resp(weights,I_synch)
print "resp (synch perturbed):",MF_resp(weights,I_synch_pert)
plt.semilogx(freqs/1.e9, weights, label=labels[i])
#plt.semilogx(freqs/1.e9, w_MF_alt(I_mu, N_vec[i]), ls='--', alpha=0.7)
weights_LR = (w_LR(I_arr_vec[i], N_noise))[0]
plt.semilogx(freqs/1.e9, weights_LR, alpha=0.7, ls='--', label=labels[i]+' (LR)')
print np.amax((weights-weights_LR)/weights)
print np.argmax((weights-weights_LR)/weights)
print freqs[np.argmax((weights-weights_LR)/weights)]
plt.axhline(y=0.,color='k',lw=0.75)
plt.legend(loc='lower right',fontsize=4,ncol=1)
#plt.savefig('matched_filter_weights.pdf')
plt.savefig('matched_filter_vs_LR_weights.pdf')