-
Notifications
You must be signed in to change notification settings - Fork 4
/
cov_project.py
38 lines (35 loc) · 1.58 KB
/
cov_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
"""
deprojection of modes corresponding to extremely small eigenvalues when inverting a cov matrix
originally suggested in email from Kendrick Smith on 2 March 2013 -- minor corrections to the equations there (want R = V D V^T)
relies on R being a real, symmetric matrix, as it is if C is a covariance matrix
"""
### threshold parameter for deprojecting ###
thresh = 1.0e15
###
def cov_inv(cov,dim): #cov = dim x dim -sized cov matrix
Delta = np.diag(cov)
# construct correlation matrix R_ij = C_ij/sqrt(C_ii C_jj)
R = np.zeros((dim,dim))
for i in xrange(dim):
for j in xrange(dim):
R[i][j] = cov[i][j] / np.sqrt(cov[i][i]*cov[j][j])
R[j][i] = R[i][j] #symmetrize
# compute eigenvalues and eigenvectors of R
eigenValues,eigenVectors = np.linalg.eig(R)
# sort from largest to smallest eigenvalue
idx = eigenValues.argsort()[::-1]
eigenValues = eigenValues[idx]
eigenVectors = eigenVectors[:,idx]
# deproject any eigenvalues that are a factor of thresh smaller than the largest one
eigenValues_inv = 1.0/eigenValues
N_deproj = 0 #count how many are deprojected
for i in xrange(1,dim):
if (eigenValues[0]/eigenValues[i] > thresh):
eigenValues_inv[i] = 0.0
N_deproj += 1
# compute cov^-1 after having deprojected the modes associated with these eigenvalues
R_inv = np.inner(np.inner(eigenVectors,np.diag(eigenValues_inv)),eigenVectors)
Delta_fac = np.diag( 1.0/np.sqrt(Delta) )
cov_inv = np.inner(np.inner(Delta_fac,R_inv),Delta_fac)
return [cov_inv, N_deproj]