forked from kassambara/survminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
367 lines (259 loc) · 13.7 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
---
output:
md_document:
variant: markdown_github
---
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
message = FALSE,
warning = FALSE,
comment = "#",
fig.path = "tools/README-",
fig.cap=""
)
```
[![R build status](https://github.com/kassambara/survminer/workflows/R-CMD-check/badge.svg)](https://github.com/kassambara/survminer/actions)
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/survminer)](https://cran.r-project.org/package=survminer)
[![Downloads](https://cranlogs.r-pkg.org/badges/survminer)](https://cran.r-project.org/package=survminer)
[![Total Downloads](https://cranlogs.r-pkg.org/badges/grand-total/survminer?color=orange)](https://cran.r-project.org/package=survminer)
<br/>
- [survminer: Survival Analysis and Visualization](#survminer-survival-analysis-and-visualization)
- [Installation and loading](#installation-and-loading)
- [ggsurvplot: Drawing survival curves](#ggsurvplot-drawing-survival-curves)
- [Fitting survival curves](#fitting-survival-curves)
- [Basic plots](#basic-plots)
- [Computing and passing p-values](#computing-and-passin-p-values)
- [Customized survival curves](#customized-survival-curves)
- [More customized survival curves](#more-customized-survival-curves)
- [Uber customized survival curves](#uber-customized-survival-curves)
- [Uber platinum customized survival curves](#uber-platinum-customized-survival-curves)
- [Uber platinum premium customized survival curves ](#uber-platinum-premium-customized-survival-curves)
- [Blog posts](#blog-posts)
# survminer: Survival Analysis and Visualization
The **survminer** R package provides functions for facilitating **survival analysis** and **visualization**.
The main functions, in the package, are organized in different categories as follow.
**Survival Curves**
<hr/><br/>
- **ggsurvplot**(): Draws survival curves with the 'number at risk' table, the cumulative number of events table and the cumulative number of censored subjects table.
- **arrange_ggsurvplots**(): Arranges multiple ggsurvplots on the same page.
- **ggsurvevents**(): Plots the distribution of event's times.
- **surv_summary**(): Summary of a survival curve. Compared to the default summary() function, surv_summary() creates a data frame containing a nice summary from survfit results.
- **surv_cutpoint**(): Determines the optimal cutpoint for one or multiple continuous variables at once. Provides a value of a cutpoint that correspond to the most significant relation with survival.
- **pairwise_survdiff**(): Multiple comparisons of survival curves. Calculate pairwise comparisons between group levels with corrections for multiple testing.
<br/>
**Diagnostics of Cox Model**
<hr/><br/>
- **ggcoxzph**(): Graphical test of proportional hazards. Displays a graph of the scaled Schoenfeld residuals, along with a smooth curve using ggplot2. Wrapper around plot.cox.zph().
- **ggcoxdiagnostics**(): Displays diagnostics graphs presenting goodness of Cox Proportional Hazards Model fit.
- **ggcoxfunctional**(): Displays graphs of continuous explanatory variable against martingale residuals of null cox proportional hazards model. It helps to properly choose the functional form of continuous variable in cox model.
<br/>
**Summary of Cox Model**
<hr/><br/>
- **ggforest**(): Draws forest plot for CoxPH model.
- **ggcoxadjustedcurves**(): Plots adjusted survival curves for coxph model.
<br/>
**Competing Risks**
<hr/><br/>
- **ggcompetingrisks**(): Plots cumulative incidence curves for competing risks.
<br/>
> Find out more at https://rpkgs.datanovia.com/survminer/, and check out the documentation and usage examples of each of the functions in survminer package.
## Installation and loading
Install from [CRAN](https://cran.r-project.org/package=survminer) as follow:
```{r, eval = FALSE}
install.packages("survminer")
```
Or, install the latest version from [GitHub](https://github.com/kassambara/survminer):
```{r, eval = FALSE}
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/survminer", build_vignettes = FALSE)
```
Load survminer:
```{r}
library("survminer")
```
## ggsurvplot: Drawing survival curves
### Fitting survival curves
```{r}
require("survival")
fit <- survfit(Surv(time, status) ~ sex, data = lung)
```
### Basic plots
```{r ggplot2-basic-survival-plot, fig.height = 4, fig.width = 5}
ggsurvplot(fit, data = lung)
```
Censor shape can be changed as follow:
```{r ggplot2-basic-survival-plot-censor, fig.height = 4, fig.width = 5, eval = FALSE}
ggsurvplot(fit, data = lung, censor.shape="|", censor.size = 4)
```
### Customized survival curves
```{r ggplot2-customized-survival-plot, fig.height = 5.5, fig.width = 6}
ggsurvplot(
fit,
data = lung,
size = 1, # change line size
palette =
c("#E7B800", "#2E9FDF"),# custom color palettes
conf.int = TRUE, # Add confidence interval
pval = TRUE, # Add p-value
risk.table = TRUE, # Add risk table
risk.table.col = "strata",# Risk table color by groups
legend.labs =
c("Male", "Female"), # Change legend labels
risk.table.height = 0.25, # Useful to change when you have multiple groups
ggtheme = theme_bw() # Change ggplot2 theme
)
```
Note that, additional arguments are available to customize the main title, axis labels, the font style, axis limits, legends and the number at risk table.
### More customized survival curves
Focus on `xlim` and `break.time.by` parameters which do not change the calculations of estimates of survival surves. Also note `risk.table.y.text.col = TRUE` and `risk.table.y.text = FALSE` that provide bars instead of names in text annotations of the legend of risk table.
```{r ggplot2-more-customized-survival-plot, fig.height = 5.5, fig.width = 6}
ggsurvplot(
fit, # survfit object with calculated statistics.
data = lung, # data used to fit survival curves.
risk.table = TRUE, # show risk table.
pval = TRUE, # show p-value of log-rank test.
conf.int = TRUE, # show confidence intervals for
# point estimates of survival curves.
xlim = c(0,500), # present narrower X axis, but not affect
# survival estimates.
xlab = "Time in days", # customize X axis label.
break.time.by = 100, # break X axis in time intervals by 500.
ggtheme = theme_light(), # customize plot and risk table with a theme.
risk.table.y.text.col = T, # colour risk table text annotations.
risk.table.y.text = FALSE # show bars instead of names in text annotations
# in legend of risk table
)
```
### Uber customized survival curves
```{r ggplot2-uber-customized-survival-plot, fig.height = 7.5, fig.width = 6}
ggsurv <- ggsurvplot(
fit, # survfit object with calculated statistics.
data = lung, # data used to fit survival curves.
risk.table = TRUE, # show risk table.
pval = TRUE, # show p-value of log-rank test.
conf.int = TRUE, # show confidence intervals for
# point estimates of survival curves.
palette = c("#E7B800", "#2E9FDF"),
xlim = c(0,500), # present narrower X axis, but not affect
# survival estimates.
xlab = "Time in days", # customize X axis label.
break.time.by = 100, # break X axis in time intervals by 500.
ggtheme = theme_light(), # customize plot and risk table with a theme.
risk.table.y.text.col = T,# colour risk table text annotations.
risk.table.height = 0.25, # the height of the risk table
risk.table.y.text = FALSE,# show bars instead of names in text annotations
# in legend of risk table.
ncensor.plot = TRUE, # plot the number of censored subjects at time t
ncensor.plot.height = 0.25,
conf.int.style = "step", # customize style of confidence intervals
surv.median.line = "hv", # add the median survival pointer.
legend.labs =
c("Male", "Female") # change legend labels.
)
ggsurv
```
### Uber platinum customized survival curves
Helper function to customize plot labels:
```{r}
customize_labels <- function (p, font.title = NULL,
font.subtitle = NULL, font.caption = NULL,
font.x = NULL, font.y = NULL, font.xtickslab = NULL, font.ytickslab = NULL)
{
original.p <- p
if(is.ggplot(original.p)) list.plots <- list(original.p)
else if(is.list(original.p)) list.plots <- original.p
else stop("Can't handle an object of class ", class (original.p))
.set_font <- function(font){
font <- ggpubr:::.parse_font(font)
ggtext::element_markdown (size = font$size, face = font$face, colour = font$color)
}
for(i in 1:length(list.plots)){
p <- list.plots[[i]]
if(is.ggplot(p)){
if (!is.null(font.title)) p <- p + theme(plot.title = .set_font(font.title))
if (!is.null(font.subtitle)) p <- p + theme(plot.subtitle = .set_font(font.subtitle))
if (!is.null(font.caption)) p <- p + theme(plot.caption = .set_font(font.caption))
if (!is.null(font.x)) p <- p + theme(axis.title.x = .set_font(font.x))
if (!is.null(font.y)) p <- p + theme(axis.title.y = .set_font(font.y))
if (!is.null(font.xtickslab)) p <- p + theme(axis.text.x = .set_font(font.xtickslab))
if (!is.null(font.ytickslab)) p <- p + theme(axis.text.y = .set_font(font.ytickslab))
list.plots[[i]] <- p
}
}
if(is.ggplot(original.p)) list.plots[[1]]
else list.plots
}
```
Customized plot labels:
```{r ggplot2-uber-platinium-customized-survival-plot, fig.height = 7.5, fig.width = 6}
# Changing Labels
# %%%%%%%%%%%%%%%%%%%%%%%%%%
# Labels for Survival Curves (plot)
ggsurv$plot <- ggsurv$plot + labs(
title = "Survival curves",
subtitle = "Based on Kaplan-Meier estimates",
caption = "created with survminer"
)
# Labels for Risk Table
ggsurv$table <- ggsurv$table + labs(
title = "Note the risk set sizes",
subtitle = "and remember about censoring.",
caption = "source code: website.com"
)
# Labels for ncensor plot
ggsurv$ncensor.plot <- ggsurv$ncensor.plot + labs(
title = "Number of censorings",
subtitle = "over the time.",
caption = "source code: website.com"
)
# Changing the font size, style and color
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Applying the same font style to all the components of ggsurv:
# survival curves, risk table and censor part
ggsurv <- customize_labels(
ggsurv,
font.title = c(16, "bold", "darkblue"),
font.subtitle = c(15, "bold.italic", "purple"),
font.caption = c(14, "plain", "orange"),
font.x = c(14, "bold.italic", "red"),
font.y = c(14, "bold.italic", "darkred"),
font.xtickslab = c(12, "plain", "darkgreen")
)
ggsurv
```
## Uber platinum premium customized survival curves
```{r ggplot2-uber-platinium-premium-customized-survival-plot, fig.height = 7.5, fig.width = 6, warning=FALSE}
# Using specific fonts for risk table and ncensor plots
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Font for Risk Table
ggsurv$table <- customize_labels(
ggsurv$table,
font.title = c(13, "bold.italic", "green"),
font.subtitle = c(15, "bold", "pink"),
font.caption = c(11, "plain", "darkgreen"),
font.x = c(8, "bold.italic", "orange"),
font.y = c(11, "bold.italic", "darkgreen"),
font.xtickslab = c(9, "bold", "red")
)
# Font for ncensor plot
ggsurv$ncensor.plot <- customize_labels(
ggsurv$ncensor.plot,
font.title = c(13, "bold.italic", "green"),
font.subtitle = c(15, "bold", "pink"),
font.caption = c(11, "plain", "darkgreen"),
font.x = c(8, "bold.italic", "orange"),
font.y = c(11, "bold.italic", "darkgreen"),
font.xtickslab = c(9, "bold", "red")
)
print(ggsurv)
```
## Blog posts
- M. Kosiński. R-ADDICT January 2017. [Comparing (Fancy) Survival Curves with Weighted Log-rank Tests](http://r-addict.com/2017/02/09/Fancy-Survival-Plots.html)
- M. Kosiński. R-ADDICT January 2017. [When You Went too Far with Survival Plots During the survminer 1st Anniversary](http://r-addict.com/2017/01/15/Too-Far-With-Survival-Plots.html)
- A. Kassambara. STHDA December 2016. [Survival Analysis Basics: Curves and Logrank Tests](http://www.sthda.com/english/wiki/survival-analysis-basics)
- A. Kassambara. STHDA December 2016. [Cox Proportional Hazards Model](http://www.sthda.com/english/wiki/cox-proportional-hazards-model)
- A. Kassambara. STHDA December 2016. [Cox Model Assumptions](http://www.sthda.com/english/wiki/cox-model-assumptions)
- M. Kosiński. R-ADDICT November 2016. [Determine optimal cutpoints for numerical variables in survival plots](http://r-addict.com/2016/11/21/Optimal-Cutpoint-maxstat.html)
- M. Kosiński. R-ADDICT May 2016. [Survival plots have never been so informative](http://r-addict.com/2016/05/23/Informative-Survival-Plots.html)
- A. Kassambara. STHDA January 2016. [survminer R package: Survival Data Analysis and Visualization](http://www.sthda.com/english/wiki/survminer-r-package-survival-data-analysis-and-visualization).