-
Notifications
You must be signed in to change notification settings - Fork 1
/
math.lisp
500 lines (448 loc) · 15.2 KB
/
math.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
;;; math.lisp --- math and geometry routines
;; Copyright (C) 2008 David O'Toole
;; Author: David O'Toole <[email protected]>
;; Keywords:
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see <http://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
(in-package :xe2)
;;; Probability
(defmacro percent-of-time (percent &body body)
`(when (< (random 100) ,percent)
,@body))
(defun roll (rolls &optional (sides 6) (adds 0))
"Total ROLLS rolls of a SIDES-sided die, then add ADDS.
So 2d6+2 would be (roll 2 6 2)."
(let ((total 0))
(+ adds
(dotimes (r rolls total)
(incf total (+ 1 (random sides)))))))
(defun roll-under (n sides)
(< n (random sides)))
;;; Space
(defun distance (x1 y1 x2 y2)
"Compute the distance between the points X1,Y1 and X2,Y2."
(declare (integer x1 y1 x2 y2) (optimize (safety 0) (speed 3)))
(let ((delta-x (- x2 x1))
(delta-y (- y2 y1)))
(sqrt (+ (* delta-x delta-x) (* delta-y delta-y)))))
(defvar *compass-directions* (list :north :south :east :west
:northeast :southeast
:northwest :southwest :here)
"List of keywords representing the eight compass directions, plus :here.")
(defvar *compass-opposites* (list :north :south
:south :north
:east :west
:west :east
:northeast :southwest
:southwest :northeast
:southeast :northwest
:northwest :southeast
:here :here)
"Property list mapping direction keywords to their 180-degree
opposites.")
(defparameter *left-turn*
'(:north :northwest
:northwest :west
:west :southwest
:southwest :south
:south :southeast
:southeast :east
:east :northeast
:northeast :north))
(defparameter *right-turn*
'(:north :northeast
:northeast :east
:east :southeast
:southeast :south
:south :southwest
:southwest :west
:west :northwest
:northwest :north))
(defun opposite-direction (direction)
"Return the direction keyword that is the opposite direction from
DIRECTION."
(getf *compass-opposites* direction))
(defun random-direction ()
(nth (random (length *compass-directions*))
*compass-directions*))
(defun step-in-direction (row column direction &optional (n 1))
"Return the point ROW, COLUMN moved by n squares in DIRECTION."
;; (when (minusp n)
;; (setf n (abs n))
;; (setf direction (opposite-direction direction)))
(ecase direction
(:here (values row column))
(:north (values (- row n) column))
(:south (values (+ row n) column))
(:east (values row (+ column n)))
(:west (values row (- column n)))
(:northeast (values (- row n) (+ column n)))
(:northwest (values (- row n) (- column n)))
(:southeast (values (+ row n) (+ column n)))
(:southwest (values (+ row n) (- column n)))))
(defun direction-to (r1 c1 r2 c2)
"Return general direction of the ray from R1,C1 to R2,C2."
(if (or (some #'null (list r1 c1 r2 c2))
(and (= r1 r2) (= c1 c2)))
:here
(if (< r1 r2) ; definitely to the south
(if (< c1 c2)
:southeast
(if (> c1 c2)
:southwest
:south))
(if (> r1 r2) ;; definitely to the north
(if (< c1 c2)
:northeast
(if (> c1 c2)
:northwest
:north))
;; rows are equal; it's either east or west
(if (< c1 c2)
:east
:west)))))
(defun within-extents (x y x0 y0 x1 y1)
(and (>= x x0)
(<= x x1)
(>= y y0)
(<= y y1)))
;;; Functions that trace out shapes
(defun trace-rectangle (trace-function row column height width &optional fill)
"Call TRACE-FUNCTION for each point on the rectangle of HEIGHT and
WIDTH with top left corner at ROW COLUMN. When FILL is non-nil, fill
the rectangle."
(block tracing
(dotimes (r height)
;; Are we painting a full horizontal? (always the case when filling)
(if (or fill (equal r 0) (equal r (- height 1)))
(dotimes (c width)
(if (funcall trace-function (+ r row) (+ c column))
(return-from tracing)))
;; no, it's a row with only verticals. just paint the left and right.
(if (or (funcall trace-function (+ r row) column)
(funcall trace-function (+ r row) (+ width column -1)))
(return-from tracing))))))
(defun trace-octagon (trace-function center-row center-column radius &optional thicken )
"Call TRACE-FUNCTION for each point on the octagon of radius RADIUS
centered at row ROW, column COLUMN. When THICKEN is non-nil, thicken
the diagonals of the rectangle in order to facilitate raycasting.
It's an ugly hack, but it helps reduce artifacts."
;; calculate
(let* ((origin-row (- center-row radius))
(origin-column (- center-column radius))
(side-length radius)
(angle-length (floor (/ (float radius) 2.0)))
(starting-x (+ 1 angle-length)))
;; draw top line
(dotimes (i side-length)
(funcall trace-function
origin-row
(+ origin-column starting-x i)))
;; draw top angles
(dotimes (i angle-length)
;; left side
(funcall trace-function
(+ 1 origin-row i)
(- center-column angle-length i 1))
;; right side
(funcall trace-function
(+ 1 origin-row i)
(+ center-column angle-length i 1))
;;
(when thicken
;; left side
(funcall trace-function
(+ 1 origin-row i)
(- center-column angle-length i))
;; right side
(funcall trace-function
(+ 1 origin-row i)
(+ center-column angle-length i))))
;; fill in diagonal points that are along the sides
(when thicken
;; left side
(funcall trace-function
(+ 1 origin-row angle-length)
(+ origin-column 1))
;; right side
(funcall trace-function
(+ 1 origin-row angle-length)
(+ center-column side-length -1)))
;; draw side lines
(dotimes (i side-length)
;; leftside
(funcall trace-function
(+ 1 origin-row angle-length i)
origin-column)
;; right side
(funcall trace-function
(+ 1 origin-row angle-length i)
(+ origin-column (* 2 side-length))))
;; fill in diagonal points that are along the sides
(when thicken
;; left side
(funcall trace-function
(+ origin-row side-length angle-length)
(+ origin-column 1))
;; right side
(funcall trace-function
(+ origin-row side-length angle-length)
(+ center-column side-length -1)))
;; draw bottom angles
(dotimes (i angle-length)
;; left side
(funcall trace-function
(+ 1 origin-row angle-length side-length i)
(- center-column angle-length (- angle-length i)))
;; right side
(funcall trace-function
(+ 1 origin-row angle-length side-length i)
(+ center-column angle-length (- angle-length i)))
(when thicken
;; left side
(funcall trace-function
(+ 1 origin-row angle-length side-length i)
(+ 1 (- center-column angle-length (- angle-length i))))
;; right side
(funcall trace-function
(+ 1 origin-row angle-length side-length i)
(+ center-column angle-length (- angle-length i 1)))))
;; draw bottom line
(dotimes (i side-length)
(funcall trace-function
(+ 1 origin-row side-length (* 2 angle-length))
(+ origin-column starting-x i)))))
;;; Line of sight and lighting
;; <: lighting :>
;; We use Bresenham's line algorithm to trace out the player's field
;; of vision and determine which squares are lit.
;; See also http://en.wikipedia.org/wiki/Bresenham's\_line\_algorithm
(defun trace-column (trace-function column y0 y1)
(let* ((diff (- y1 y0))
(fact (if (minusp diff) 1 -1)))
(dotimes (n (abs diff))
(funcall trace-function (+ y1 (* n fact)) column))))
;; (dotimes (n (abs (- y1 y0)))
;; (funcall trace-function x (+ y0 n))))
(defun trace-row (trace-function row x0 x1)
(let* ((diff (- x1 x0))
(fact (if (minusp diff) 1 -1)))
(dotimes (n (abs diff))
(funcall trace-function row (+ x1 (* n fact))))))
;; (defun trace-line (trace-function x0 y0 x1 y1)
;; "Trace a line between X0,Y0 and X1,Y1.
;; calling TRACE-FUNCTION at each point of the line."
;; ;; analyze coordinates and prepare them for bresenham's
;; (let ((steep (> (abs (- y1 y0))
;; (abs (- x1 x0)))))
;; ;; reflect steep lines through line y=x
;; (when steep
;; (rotatef x0 y0)
;; (rotatef x1 y1))
;; ;; swap points if line is backwards
;; (let ((flipped (> x0 x1)))
;; (when flipped
;; (rotatef x0 x1)
;; (rotatef y0 y1))
;; (values flipped
;; (if (= x1 x0)
;; ;; just trace a vertical line.
;; (if flipped
;; (trace-column trace-function x1 y0 y1)
;; (trace-column trace-function x1 y1 y0))
;; ;; ok, use bresenham's
;; (let* ((delta-x (- x1 x0))
;; (delta-y (abs (- y1 y0)))
;; (err 0.0)
;; (delta-err (/ (float delta-y) (float delta-x)))
;; (y y0)
;; (x x0)
;; (step-y (if (< y0 y1) 1 -1)))
;; ;; main loop
;; (block tracing
;; (loop do
;; ;; call the supplied trace function.
;; ;; note that trace functions get args in order (row column).
;; ;; terminate with result = nil if it returns non-nil.
;; (when (if steep
;; (funcall trace-function x y)
;; (funcall trace-function y x))
;; (return-from tracing t))
;; (incf err delta-err)
;; (when (>= err 0.5)
;; (incf y step-y)
;; (decf err 1.0))
;; ;; for next iteration
;; (incf x)
;; while (/= x x1)))))))))
(defun trace-line (trace-function x0 y0 x1 y1)
"Trace a line between X0,Y0 and X1,Y1.
calling TRACE-FUNCTION at each point of the line."
;; analyze coordinates and prepare them for bresenham's
(let ((steep (> (abs (- y1 y0))
(abs (- x1 x0)))))
;; reflect steep lines through line y=x
(when steep
(rotatef x0 y0)
(rotatef x1 y1))
;; swap points if line is backwards
(let ((flipped (> x0 x1)))
(when flipped
(rotatef x0 x1)
(rotatef y0 y1))
(values flipped
(if (= x1 x0)
;; just trace a vertical line.
(if flipped
(trace-column trace-function x1 y0 y1)
(trace-column trace-function x1 y1 y0))
;; ok, use bresenham's
(let* ((delta-x (- x1 x0))
(delta-y (abs (- y1 y0)))
(err 0.0)
(delta-err (/ (float delta-y) (float delta-x)))
(y y0)
(x x0)
(step-y (if (< y0 y1) 1 -1)))
;; main loop
(labels ((update-xy ()
(incf err delta-err)
(when (>= err 0.5)
(incf y step-y)
(decf err 1.0))
(incf x)))
(block tracing
(update-xy)
(loop while (/= x x1) do
;; call the supplied trace function.
;; note that trace functions get args in order (row column).
;; terminate with result = nil if it returns non-nil.
(when (if steep
(funcall trace-function x y)
(funcall trace-function y x))
(return-from tracing t))
(update-xy))))))))))
;;; Tracing macros
(defmacro with-trace-line ((row-sym col-sym) x0 y0 x1 y1 &rest body)
(let ((tracer-sym (gensym)))
`(labels ((,tracer-sym ,(list row-sym col-sym)
,@body))
(trace-line #',tracer-sym ,x0 ,y0 ,x1 ,y1))))
;; Try macroexpanding:
;; (with-trace-line (r c) x0 y0 x1 y1 (plot r c))
(defmacro with-trace-rectangle ((row-sym col-sym)
row column height width &rest body)
(let ((tracer-sym (gensym)))
`(labels ((,tracer-sym ,(list row-sym col-sym)
,@body))
(trace-rectangle #',tracer-sym ,row ,column ,height ,width))))
(defmacro with-trace-octagon ((row-sym col-sym) center-row center-column
radius thicken-p &rest body)
(let ((tracer-sym (gensym)))
`(labels ((,tracer-sym ,(list row-sym col-sym)
,@body))
(trace-octagon #',tracer-sym ,center-row ,center-column ,radius ,thicken-p))))
;;; Random midpoint displacement fractals, a.k.a. plasma
;; The following routines create random midpoint displacement fractals
;; on a grid. This is useful for natural-looking world generation.
;; See also http://en.wikipedia.org/wiki/Diamond-square_algorithm
;; My implementation is slow and needs to be improved.
;; First comes the midpoint formula.
;; http://en.wikipedia.org/wiki/Midpoint
(defun midpoint (A B)
(list (truncate (/ (+ (first A) (first B)) 2))
(truncate (/ (+ (second A) (second B)) 2))))
;; We need an representation for a rectangle that is appropriate to
;; our problem. Then we must allow recursive subdivision of
;; rectangles.
(defstruct plasma-rect
A B C D)
(defun subdivide-rect (R)
"Subdivide rectangle R into four rectangles joined at the
center point of the original R, and return the list of four
rectangles, or NIL if they would be smaller than one pixel."
(let* ((A (plasma-rect-A R))
(B (plasma-rect-B R))
(C (plasma-rect-C R))
(D (plasma-rect-D R)))
;; are they too small?
(if (> 2 (abs (- (first C) (first A))))
nil
(let
((R1 (make-plasma-rect :A A
:B (midpoint A B)
:C (midpoint A C)
:D (midpoint A D)))
;;
(R2 (make-plasma-rect :A (midpoint A B)
:B B
:C (midpoint B C)
:D (midpoint B D)))
;;
(R3 (make-plasma-rect :A (midpoint A C)
:B (midpoint B C)
:C C
:D (midpoint C D)))
;;
(R4 (make-plasma-rect :A (midpoint A D)
:B (midpoint B D)
:C (midpoint C D)
:D D)))
(list R1 R2 R3 R4)))))
(defun render-plasma (height width &key (graininess 1.0) array)
(let* ((grid (or array (make-array (list height width))))
(A (list 0 0))
(B (list 0 (- height 1)))
(C (list (- width 1) 0))
(D (list (- width 1) (- height 1)))
(Rs (list (make-plasma-rect :A A :B B :C C :D D)))
(Ss nil)
(S nil)
(R nil)
(rect-width nil))
;; assign random values to corners of grid to prime the algorithm
(dolist (P (list A B C D))
(setf (aref grid (second P) (first P)) (random graininess)))
;; begin processing rectangles and painting plasma
(loop while (setf R (pop Rs))
do
;; subdivide rectangle R and push results onto the rectangle list Rs
(setf Ss (subdivide-rect R))
(if Ss
(loop while (setf S (pop Ss)) do
(push S Rs)))
;; calculate values for midpoints and center of current rectangle R
(setf A (plasma-rect-A R))
(setf B (plasma-rect-B R))
(setf C (plasma-rect-C R))
(setf D (plasma-rect-D R))
(setf rect-width (abs (- -1 (first C) (first A))))
;; do for all edge midpoints and center:
(dolist (pair (list (list A B) (list A C)
(list B D) (list C D) (list A D)))
(let* ((P1 (first pair))
(P2 (second pair))
(M (midpoint P1 P2))
(V (+
;; average value of values at P1 and P2
(* 0.5
(+ (aref grid (second P1) (first P1))
(aref grid (second P2) (first P2))
;; random part smaller as rects get smaller
(* graininess (- 0.5 (random 1.0))
(sqrt (float rect-width))))))))
;; paint the point
(setf (aref grid (second M) (first M)) V))))
grid))
;;; Cellular automata
;;; math.lisp ends here