-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccf.jl
54 lines (49 loc) · 1.79 KB
/
ccf.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
using NaNStatistics
using StatsBase
function ccf(sol,binsize)
u1=[ui[1] for ui in sol.u]
u2=[ui[2] for ui in sol.u]
n=length(u1)
# @show n
idx=1:n
fire1_idx=idx[u1.>0]
fire1_binned,bins=histcountindices(fire1_idx,0:binsize/0.1:n)
fire2_idx=idx[u2.>0]
fire2_binned,bins=histcountindices(fire2_idx,0:binsize/0.1:n)
# @show sum(fire1_binned),sum(fire2_binned)
N=length(fire1_binned)
@show n,N
# ccf=xcorr(fire1_binned,fire2_binned)
# positive t
# ccf=[N*sum(fire1_binned[t+1:N-t].*fire2_binned[1+2*t:N])/((N-t)*sqrt(sum(fire1_binned)*sum(fire2_binned))) for t in 0:N-1]
# # negative t
# ccf1=[N*sum(fire1_binned[1-t:N+t].*fire2_binned[1:N+2*t])/((N+t)*sqrt(sum(fire1_binned)*sum(fire2_binned))) for t in -100:0]
# ccf=vcat(ccf1,ccf2)
# all
# ccf=[N*sum(fire1_binned[abs(t)+1:N-abs(t)].*fire2_binned[1+2*abs(t):N])/((N-2*abs(t))*sqrt(sum(fire1_binned)*sum(fire2_binned))) for t in 1-N:N-1]
ccf=abs.(crosscor(fire1_binned,fire2_binned))
return ccf
end
function ccf_sampling(u1,u2,binsize,corr_len,samples)
# u1=[ui[1] for ui in sol.u]
# u2=[ui[2] for ui in sol.u]
# u1=u1[1,:]
# u2=u2[1,:]
idx=1:length(u1)
fire1_idx=idx[u1.>0]
s1,bins=histcountindices(fire1_idx,0:binsize:length(u1))
fire2_idx=idx[u2.>0]
s2,bins=histcountindices(fire2_idx,0:binsize:length(u1))
# samples=10
N=length(s1)
n=N/samples
ccf_by_time=Array{Float64}(undef,samples,1)
for i in 1:samples-1
start_idx=floor(Int,(i-1)*n+1)
s1_temp=s1[start_idx:start_idx+corr_len-1]
s2_temp=s2[start_idx:start_idx+corr_len-1]
corr=crosscor(s1_temp,s2_temp)
ccf_by_time[i]=maximum(abs.(corr))
end
return ccf_by_time
end