-
Notifications
You must be signed in to change notification settings - Fork 0
/
FVM_1D_Diffusion_Neumann_BC.py
244 lines (180 loc) · 6.76 KB
/
FVM_1D_Diffusion_Neumann_BC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
import matplotlib.pyplot as plt
print("\n")
print("Finite Volume Method\n")
print("Solving 1D Heat Diffusion Equation with Neumann Boundary Condition\n")
print("Discretization for Diffusion Term: Central Difference Scheme\n")
cond = 100
print("Conductivity of the Material:",cond,'W/m-K')
area = 0.1
print("Cross Section Area of Rod:",area,'m2')
barLength = 5
print("\nLength of the rod:",barLength,'m')
heatfluxLeftbc = 200
print("Heat Flux at the Left End of the Rod:",heatfluxLeftbc,'C/m')
tempRight = 200
print("Temperature at the Right End of the Rod:",tempRight,'C')
heatSourcePerVol = 1000
print("Heat Source in the Rod:",heatSourcePerVol,'W/m3')
print("\n")
nCell = int(input('Enter the number of Cells for Meshing the Rod: ')) #Number of Cells
lineSingle = '------------------------------------------------'
lineDouble = '================================================'
print('Creating Mesh')
print(lineSingle)
#cell coordinates
xFace = np.linspace(0, barLength, nCell+1)
#cell centroids
xCentroid = 0.5*(xFace[1:] + xFace[0:-1])
#cell length
cellLength = xFace[1:] - xFace[0:-1]
#distance between cell centroids
dCentroid = xCentroid[1:] - xCentroid[0:-1]
# For the boundary cell on the left, the distance is double the distance
# from the cell centroid to the boundary face
dLeft = 2*(xCentroid[0] - xFace[0])
# For the boundary cell on the right, the distance is double the distance
#from the cell centroid to the boundary cell face
dRight = 2*(xFace[-1] - xCentroid[-1])
# Append these to the vector of distances
dCentroid = np.hstack([dLeft, dCentroid, dRight])
dCentroidLeft = dCentroid[0:-1]
dCentroidRight = dCentroid[1:]
#Area of cell Faces
areaLeftFaces = area*np.ones(nCell)
areaRightFaces = area*np.ones(nCell)
#cellvolume
cellVolume = cellLength*area
print('Assigning Material Properties')
print(lineSingle)
conductivityFaces = cond*np.ones(nCell+1)
conductivityLeftFaces = conductivityFaces[0:-1]
conductivityRightFaces = conductivityFaces[1:]
print ('Calculating Matrix Coefficients')
print(lineSingle)
#diffusive flux per unit area
DA_LeftFaces = np.divide(np.multiply(conductivityLeftFaces,areaLeftFaces),dCentroidLeft)
DA_RightFaces= np.divide(np.multiply(conductivityRightFaces,areaRightFaces),dCentroidRight)
#souce term Su
Su = heatSourcePerVol*cellVolume
Su[0] = Su[0] - heatfluxLeftbc*area
Su[-1] = Su[-1] + 2*tempRight*np.copy(DA_RightFaces[-1])
#source term Sp
Sp = np.zeros(nCell)
Sp[0] = 0
Sp[-1] = -2*np.copy(DA_RightFaces[-1])
#left coefficient aL
aL = np.copy(DA_LeftFaces)
#right coefficient aR
aR = np.copy(DA_RightFaces)
aL[0] = 0
aR[-1] = 0
#central coeff Ap
aP = np.copy(aL) + np.copy(aR) - np.copy(Sp)
print ('Assembling Matrices')
print(lineSingle)
# creat empty matrix A & empty vector B
Amatrix = np.zeros([nCell, nCell])
BVector = np.zeros(nCell)
for i in range(nCell):
if i == 0:
Amatrix[i,i] = aP[i]
Amatrix[i,i+1] = -aR[i]
elif i == nCell-1:
Amatrix[i,i-1] = -aL[i]
Amatrix[i,i] = aP[i]
else:
Amatrix[i,i-1] = -aL[i]
Amatrix[i,i] = aP[i]
Amatrix[i,i+1] = -aR[i]
BVector[i] = Su[i]
print ('Summary: Set Up')
print(lineSingle)
print ('Cell | aL | aR | ap | Sp | Su ')
print(lineSingle)
for i in range(nCell):
print ('%4i %5.1f %5.1f %5.1f %5.1f %7.1f ' % (
i+1, aL[i], aR[i], aP[i], Sp[i], Su[i]))
print(lineSingle)
np.set_printoptions(linewidth=np.inf)
print ('A matrix:')
print(lineSingle)
print(Amatrix)
print ('B vector')
print(lineSingle)
print(BVector)
print(lineSingle)
print ('Solving ...')
print(lineSingle)
Tvector = np.linalg.solve(Amatrix, BVector)
print ('Equations Solved')
print(lineSingle)
print('Solution: Temperature Vector')
print(lineSingle)
Tvector = np.around(Tvector, decimals = 2)
print(Tvector)
print(lineSingle)
tempLeft = (Tvector[0] - (heatfluxLeftbc*area)/(2*np.copy(DA_LeftFaces[0])))
print('Left Boudnary Temperature:')
print(lineSingle)
print(tempLeft)
temperatureStack = np.hstack([tempLeft, np.copy(Tvector), tempRight])
temperatureDifferenceLeft = temperatureStack[1:-1] - temperatureStack[0:-2]
temperatureDifferenceRight = temperatureStack[2:] - temperatureStack[1:-1]
normalLeft = -1*np.ones(nCell)
normalRight = 1*np.ones(nCell)
heatfluxLeft = -1*np.prod([normalLeft, temperatureDifferenceLeft, DA_LeftFaces],0)
heatfluxRight = -1*np.prod([normalRight, temperatureDifferenceRight, DA_RightFaces],0)
heatfluxLeft[0] *= 2.0
heatfluxRight[-1] *= 2.0
heatSource = heatSourcePerVol*cellVolume
heatBalanceError = heatSource - heatfluxLeft - heatfluxRight
print ('\nHeat Balance:')
print(lineSingle)
print ('Cell | QL | QR | SV | Error')
print(lineSingle)
for i in range(nCell):
print('%4i %7.1f %7.1f %7.1f %7.1f' %(i+1, heatfluxLeft[i], heatfluxRight[i],
heatSource[i], heatBalanceError[i]))
print(lineSingle)
print (' Plotting ...')
print(lineSingle)
xPlotting = np.hstack([xFace[0], np.copy(xCentroid), xFace[-1]])
xAnalytical = np.linspace(0, barLength, 100)
temperatureAnalytical = ((heatSourcePerVol/(2.0*cond))
*(barLength*barLength*np.ones(len(xAnalytical))
- np.square(xAnalytical))
+ (heatfluxLeftbc/cond)*(xAnalytical
- barLength*np.ones(len(xAnalytical)))
+ tempRight)
fontSize = 14
fontSizeLegend = 14
lineWidth = 2.0
tickPad = 8
tickPad2 = 16
labelPadY = 1
labelPadX = 2
boxPad = 5
darkBlue = (0.0,0.129,0.2784)
darkRed = (0.7176, 0.0705, 0.207)
plt.rc('font', family='serif')
plt.rcParams["figure.figsize"] = (6.2,4.2)
plt.rcParams['axes.linewidth'] = lineWidth
fig1 = plt.figure()
ax = fig1.add_subplot()
fig1.tight_layout(pad=boxPad)
ax.plot(xPlotting , temperatureStack, 'bo',linewidth = lineWidth, label='CFD', color=darkRed)
ax.plot(xAnalytical, temperatureAnalytical, 'k--',linewidth = lineWidth, label = 'Analytical', color=darkBlue)
plt.xlabel(r'$x$ [m]', fontsize=fontSize, labelpad = labelPadX)
plt.ylabel(r'$T$ [$^{\circ}$ C]', fontsize=fontSize, labelpad = labelPadY)
plt.title('Temperature Distribution Along the Bar')
plt.yticks(fontsize = fontSize)
plt.xticks(fontsize = fontSize)
plt.xlim([xFace[0], xFace[-1]])
leg = plt.legend(fontsize = fontSizeLegend, loc='best', edgecolor = 'r')
leg.get_frame().set_linewidth(lineWidth)
ax.tick_params(which = 'both', direction='in', length=6,width=lineWidth, gridOn = False)
ax.yaxis.set_ticks_position('both')
ax.xaxis.set_ticks_position('both')
ax.tick_params(pad=tickPad)
plt.show()