This is the PaddlePaddle implementation of variational auto-encoder, applying on MNIST dataset.
Currently, the following models are supported:
✔️ VAE
✔️ Conv-VAE
CUDA_VISIBLE_DEVICES=0
sh run.sh
or
CUDA_VISIBLE_DEVICES=0 \
python train.py \
--mode=convVAE \
--result_dir=result \
--save_dir=checkpoint \
--batch_size=128 \
--epoches=100 \
--lr=1e-3 \
--z_dim=20 \
--input_dim=28*28 \
--input_channels=1
you can also specify some customized options in train.py
python generate.py \
--mode=convVAE \
--ckpt='' \ #指定模型参数文件路径
--result_dir=generate_result
Here are some visualization results: