forked from pierluigiferrari/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathssd_box_encode_decode_utils.py
1165 lines (1035 loc) · 85 KB
/
ssd_box_encode_decode_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Includes:
* Function to compute IoU similarity for axis-aligned, rectangular, 2D bounding boxes
* Function to perform greedy non-maximum suppression
* Function to decode raw SSD model output
* Class to encode targets for SSD model training
Copyright (C) 2017 Pierluigi Ferrari
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
import numpy as np
def iou(boxes1, boxes2, coords='centroids'):
'''
Compute the intersection-over-union similarity (also known as Jaccard similarity)
of two axis-aligned 2D rectangular boxes or of multiple axis-aligned 2D rectangular
boxes contained in two arrays with broadcast-compatible shapes.
Three common use cases would be to compute the similarities for 1 vs. 1, 1 vs. `n`,
or `n` vs. `n` boxes. The two arguments are symmetric.
Arguments:
boxes1 (array): Either a 1D Numpy array of shape `(4, )` containing the coordinates for one box in the
format specified by `coords` or a 2D Numpy array of shape `(n, 4)` containing the coordinates for `n` boxes.
Shape must be broadcast-compatible to `boxes2`.
boxes2 (array): Either a 1D Numpy array of shape `(4, )` containing the coordinates for one box in the
format specified by `coords` or a 2D Numpy array of shape `(n, 4)` containing the coordinates for `n` boxes.
Shape must be broadcast-compatible to `boxes1`.
coords (str, optional): The coordinate format in the input arrays. Can be either 'centroids' for the format
`(cx, cy, w, h)`, 'minmax' for the format `(xmin, xmax, ymin, ymax)`, or 'corners' for the format
`(xmin, ymin, xmax, ymax)`.
Returns:
A 1D Numpy array of dtype float containing values in [0,1], the Jaccard similarity of the boxes in `boxes1` and `boxes2`.
0 means there is no overlap between two given boxes, 1 means their coordinates are identical.
'''
if len(boxes1.shape) > 2: raise ValueError("boxes1 must have rank either 1 or 2, but has rank {}.".format(len(boxes1.shape)))
if len(boxes2.shape) > 2: raise ValueError("boxes2 must have rank either 1 or 2, but has rank {}.".format(len(boxes2.shape)))
if len(boxes1.shape) == 1: boxes1 = np.expand_dims(boxes1, axis=0)
if len(boxes2.shape) == 1: boxes2 = np.expand_dims(boxes2, axis=0)
if not (boxes1.shape[1] == boxes2.shape[1] == 4): raise ValueError("It must be boxes1.shape[1] == boxes2.shape[1] == 4, but it is boxes1.shape[1] == {}, boxes2.shape[1] == {}.".format(boxes1.shape[1], boxes2.shape[1]))
if coords == 'centroids':
# TODO: Implement a version that uses fewer computation steps (that doesn't need conversion)
boxes1 = convert_coordinates(boxes1, start_index=0, conversion='centroids2minmax')
boxes2 = convert_coordinates(boxes2, start_index=0, conversion='centroids2minmax')
elif not (coords in {'minmax', 'corners'}):
raise ValueError("Unexpected value for `coords`. Supported values are 'minmax', 'corners' and 'centroids'.")
if coords in {'minmax', 'centroids'}:
intersection = np.maximum(0, np.minimum(boxes1[:,1], boxes2[:,1]) - np.maximum(boxes1[:,0], boxes2[:,0])) * np.maximum(0, np.minimum(boxes1[:,3], boxes2[:,3]) - np.maximum(boxes1[:,2], boxes2[:,2]))
union = (boxes1[:,1] - boxes1[:,0]) * (boxes1[:,3] - boxes1[:,2]) + (boxes2[:,1] - boxes2[:,0]) * (boxes2[:,3] - boxes2[:,2]) - intersection
elif coords == 'corners':
intersection = np.maximum(0, np.minimum(boxes1[:,2], boxes2[:,2]) - np.maximum(boxes1[:,0], boxes2[:,0])) * np.maximum(0, np.minimum(boxes1[:,3], boxes2[:,3]) - np.maximum(boxes1[:,1], boxes2[:,1]))
union = (boxes1[:,2] - boxes1[:,0]) * (boxes1[:,3] - boxes1[:,1]) + (boxes2[:,2] - boxes2[:,0]) * (boxes2[:,3] - boxes2[:,1]) - intersection
return intersection / union
def convert_coordinates(tensor, start_index, conversion):
'''
Convert coordinates for axis-aligned 2D boxes between two coordinate formats.
Creates a copy of `tensor`, i.e. does not operate in place. Currently there are
three supported coordinate formats that can be converted from and to each other:
1) (xmin, xmax, ymin, ymax) - the 'minmax' format
2) (xmin, ymin, xmax, ymax) - the 'corners' format
2) (cx, cy, w, h) - the 'centroids' format
Note that converting from one of the supported formats to another and back is
an identity operation up to possible rounding errors for integer tensors.
Arguments:
tensor (array): A Numpy nD array containing the four consecutive coordinates
to be converted somewhere in the last axis.
start_index (int): The index of the first coordinate in the last axis of `tensor`.
conversion (str, optional): The conversion direction. Can be 'minmax2centroids',
'centroids2minmax', 'corners2centroids', 'centroids2corners', 'minmax2corners',
or 'corners2minmax'.
Returns:
A Numpy nD array, a copy of the input tensor with the converted coordinates
in place of the original coordinates and the unaltered elements of the original
tensor elsewhere.
'''
ind = start_index
tensor1 = np.copy(tensor).astype(np.float)
if conversion == 'minmax2centroids':
tensor1[..., ind] = (tensor[..., ind] + tensor[..., ind+1]) / 2.0 # Set cx
tensor1[..., ind+1] = (tensor[..., ind+2] + tensor[..., ind+3]) / 2.0 # Set cy
tensor1[..., ind+2] = tensor[..., ind+1] - tensor[..., ind] # Set w
tensor1[..., ind+3] = tensor[..., ind+3] - tensor[..., ind+2] # Set h
elif conversion == 'centroids2minmax':
tensor1[..., ind] = tensor[..., ind] - tensor[..., ind+2] / 2.0 # Set xmin
tensor1[..., ind+1] = tensor[..., ind] + tensor[..., ind+2] / 2.0 # Set xmax
tensor1[..., ind+2] = tensor[..., ind+1] - tensor[..., ind+3] / 2.0 # Set ymin
tensor1[..., ind+3] = tensor[..., ind+1] + tensor[..., ind+3] / 2.0 # Set ymax
elif conversion == 'corners2centroids':
tensor1[..., ind] = (tensor[..., ind] + tensor[..., ind+2]) / 2.0 # Set cx
tensor1[..., ind+1] = (tensor[..., ind+1] + tensor[..., ind+3]) / 2.0 # Set cy
tensor1[..., ind+2] = tensor[..., ind+2] - tensor[..., ind] # Set w
tensor1[..., ind+3] = tensor[..., ind+3] - tensor[..., ind+1] # Set h
elif conversion == 'centroids2corners':
tensor1[..., ind] = tensor[..., ind] - tensor[..., ind+2] / 2.0 # Set xmin
tensor1[..., ind+1] = tensor[..., ind+1] - tensor[..., ind+3] / 2.0 # Set ymin
tensor1[..., ind+2] = tensor[..., ind] + tensor[..., ind+2] / 2.0 # Set xmax
tensor1[..., ind+3] = tensor[..., ind+1] + tensor[..., ind+3] / 2.0 # Set ymax
elif (conversion == 'minmax2corners') or (conversion == 'corners2minmax'):
tensor1[..., ind+1] = tensor[..., ind+2]
tensor1[..., ind+2] = tensor[..., ind+1]
else:
raise ValueError("Unexpected conversion value. Supported values are 'minmax2centroids', 'centroids2minmax', 'corners2centroids', 'centroids2corners', 'minmax2corners', and 'corners2minmax'.")
return tensor1
def convert_coordinates2(tensor, start_index, conversion):
'''
A matrix multiplication implementation of `convert_coordinates()`.
Supports only conversion between the 'centroids' and 'minmax' formats.
This function is marginally slower on average than `convert_coordinates()`,
probably because it involves more (unnecessary) arithmetic operations (unnecessary
because the two matrices are sparse).
For details please refer to the documentation of `convert_coordinates()`.
'''
ind = start_index
tensor1 = np.copy(tensor).astype(np.float)
if conversion == 'minmax2centroids':
M = np.array([[0.5, 0. , -1., 0.],
[0.5, 0. , 1., 0.],
[0. , 0.5, 0., -1.],
[0. , 0.5, 0., 1.]])
tensor1[..., ind:ind+4] = np.dot(tensor1[..., ind:ind+4], M)
elif conversion == 'centroids2minmax':
M = np.array([[ 1. , 1. , 0. , 0. ],
[ 0. , 0. , 1. , 1. ],
[-0.5, 0.5, 0. , 0. ],
[ 0. , 0. , -0.5, 0.5]]) # The multiplicative inverse of the matrix above
tensor1[..., ind:ind+4] = np.dot(tensor1[..., ind:ind+4], M)
else:
raise ValueError("Unexpected conversion value. Supported values are 'minmax2centroids' and 'centroids2minmax'.")
return tensor1
def greedy_nms(y_pred_decoded, iou_threshold=0.45, coords='corners'):
'''
Perform greedy non-maximum suppression on the input boxes.
Greedy NMS works by selecting the box with the highest score and
removing all boxes around it that are too close to it measured by IoU-similarity.
Out of the boxes that are left over, once again the one with the highest
score is selected and so on, until no boxes with too much overlap are left.
This is a basic, straight-forward NMS algorithm that is relatively efficient,
but it has a number of downsides. One of those downsides is that the box with
the highest score might not always be the box with the best fit to the object.
There are more sophisticated NMS techniques like [this one](https://lirias.kuleuven.be/bitstream/123456789/506283/1/3924_postprint.pdf)
that use a combination of nearby boxes, but in general there will probably
always be a trade-off between speed and quality for any given NMS technique.
Arguments:
y_pred_decoded (list): A batch of decoded predictions. For a given batch size `n` this
is a list of length `n` where each list element is a 2D Numpy array.
For a batch item with `k` predicted boxes this 2D Numpy array has
shape `(k, 6)`, where each row contains the coordinates of the respective
box in the format `[class_id, score, xmin, xmax, ymin, ymax]`.
Technically, the number of columns doesn't have to be 6, it can be
arbitrary as long as the first four elements of each row are
`xmin`, `xmax`, `ymin`, `ymax` (in this order) and the last element
is the score assigned to the prediction. Note that this function is
agnostic to the scale of the score or what it represents.
iou_threshold (float, optional): All boxes with a Jaccard similarity of
greater than `iou_threshold` with a locally maximal box will be removed
from the set of predictions, where 'maximal' refers to the box score.
Defaults to 0.45 following the paper.
coords (str, optional): The coordinate format of `y_pred_decoded`.
Can be one of the formats supported by `iou()`. Defaults to 'corners'.
Returns:
The predictions after removing non-maxima. The format is the same as the input format.
'''
y_pred_decoded_nms = []
for batch_item in y_pred_decoded: # For the labels of each batch item...
boxes_left = np.copy(batch_item)
maxima = [] # This is where we store the boxes that make it through the non-maximum suppression
while boxes_left.shape[0] > 0: # While there are still boxes left to compare...
maximum_index = np.argmax(boxes_left[:,1]) # ...get the index of the next box with the highest confidence...
maximum_box = np.copy(boxes_left[maximum_index]) # ...copy that box and...
maxima.append(maximum_box) # ...append it to `maxima` because we'll definitely keep it
boxes_left = np.delete(boxes_left, maximum_index, axis=0) # Now remove the maximum box from `boxes_left`
if boxes_left.shape[0] == 0: break # If there are no boxes left after this step, break. Otherwise...
similarities = iou(boxes_left[:,2:], maximum_box[2:], coords=coords) # ...compare (IoU) the other left over boxes to the maximum box...
boxes_left = boxes_left[similarities <= iou_threshold] # ...so that we can remove the ones that overlap too much with the maximum box
y_pred_decoded_nms.append(np.array(maxima))
return y_pred_decoded_nms
def _greedy_nms(predictions, iou_threshold=0.45, coords='corners'):
'''
The same greedy non-maximum suppression algorithm as above, but slightly modified for use as an internal
function for per-class NMS in `decode_y()`.
'''
boxes_left = np.copy(predictions)
maxima = [] # This is where we store the boxes that make it through the non-maximum suppression
while boxes_left.shape[0] > 0: # While there are still boxes left to compare...
maximum_index = np.argmax(boxes_left[:,0]) # ...get the index of the next box with the highest confidence...
maximum_box = np.copy(boxes_left[maximum_index]) # ...copy that box and...
maxima.append(maximum_box) # ...append it to `maxima` because we'll definitely keep it
boxes_left = np.delete(boxes_left, maximum_index, axis=0) # Now remove the maximum box from `boxes_left`
if boxes_left.shape[0] == 0: break # If there are no boxes left after this step, break. Otherwise...
similarities = iou(boxes_left[:,1:], maximum_box[1:], coords=coords) # ...compare (IoU) the other left over boxes to the maximum box...
boxes_left = boxes_left[similarities <= iou_threshold] # ...so that we can remove the ones that overlap too much with the maximum box
return np.array(maxima)
def _greedy_nms2(predictions, iou_threshold=0.45, coords='corners'):
'''
The same greedy non-maximum suppression algorithm as above, but slightly modified for use as an internal
function in `decode_y2()`.
'''
boxes_left = np.copy(predictions)
maxima = [] # This is where we store the boxes that make it through the non-maximum suppression
while boxes_left.shape[0] > 0: # While there are still boxes left to compare...
maximum_index = np.argmax(boxes_left[:,1]) # ...get the index of the next box with the highest confidence...
maximum_box = np.copy(boxes_left[maximum_index]) # ...copy that box and...
maxima.append(maximum_box) # ...append it to `maxima` because we'll definitely keep it
boxes_left = np.delete(boxes_left, maximum_index, axis=0) # Now remove the maximum box from `boxes_left`
if boxes_left.shape[0] == 0: break # If there are no boxes left after this step, break. Otherwise...
similarities = iou(boxes_left[:,2:], maximum_box[2:], coords=coords) # ...compare (IoU) the other left over boxes to the maximum box...
boxes_left = boxes_left[similarities <= iou_threshold] # ...so that we can remove the ones that overlap too much with the maximum box
return np.array(maxima)
def decode_y(y_pred,
confidence_thresh=0.01,
iou_threshold=0.45,
top_k=200,
input_coords='centroids',
normalize_coords=False,
img_height=None,
img_width=None):
'''
Convert model prediction output back to a format that contains only the positive box predictions
(i.e. the same format that `enconde_y()` takes as input).
After the decoding, two stages of prediction filtering are performed for each class individually:
First confidence thresholding, then greedy non-maximum suppression. The filtering results for all
classes are concatenated and the `top_k` overall highest confidence results constitute the final
predictions for a given batch item. This procedure follows the original Caffe implementation.
For a slightly different and more efficient alternative to decode raw model output that performs
non-maximum suppresion globally instead of per class, see `decode_y2()` below.
Arguments:
y_pred (array): The prediction output of the SSD model, expected to be a Numpy array
of shape `(batch_size, #boxes, #classes + 4 + 4 + 4)`, where `#boxes` is the total number of
boxes predicted by the model per image and the last axis contains
`[one-hot vector for the classes, 4 predicted coordinate offsets, 4 anchor box coordinates, 4 variances]`.
confidence_thresh (float, optional): A float in [0,1), the minimum classification confidence in a specific
positive class in order to be considered for the non-maximum suppression stage for the respective class.
A lower value will result in a larger part of the selection process being done by the non-maximum suppression
stage, while a larger value will result in a larger part of the selection process happening in the confidence
thresholding stage. Defaults to 0.01, following the paper.
iou_threshold (float, optional): A float in [0,1]. All boxes with a Jaccard similarity of greater than `iou_threshold`
with a locally maximal box will be removed from the set of predictions for a given class, where 'maximal' refers
to the box score. Defaults to 0.45 following the paper.
top_k (int, optional): The number of highest scoring predictions to be kept for each batch item after the
non-maximum suppression stage. Defaults to 200, following the paper.
input_coords (str, optional): The box coordinate format that the model outputs. Can be either 'centroids'
for the format `(cx, cy, w, h)` (box center coordinates, width, and height), 'minmax' for the format
`(xmin, xmax, ymin, ymax)`, or 'corners' for the format `(xmin, ymin, xmax, ymax)`. Defaults to 'centroids'.
normalize_coords (bool, optional): Set to `True` if the model outputs relative coordinates (i.e. coordinates in [0,1])
and you wish to transform these relative coordinates back to absolute coordinates. If the model outputs
relative coordinates, but you do not want to convert them back to absolute coordinates, set this to `False`.
Do not set this to `True` if the model already outputs absolute coordinates, as that would result in incorrect
coordinates. Requires `img_height` and `img_width` if set to `True`. Defaults to `False`.
img_height (int, optional): The height of the input images. Only needed if `normalize_coords` is `True`.
img_width (int, optional): The width of the input images. Only needed if `normalize_coords` is `True`.
Returns:
A python list of length `batch_size` where each list element represents the predicted boxes
for one image and contains a Numpy array of shape `(boxes, 6)` where each row is a box prediction for
a non-background class for the respective image in the format `[class_id, confidence, xmin, ymin, xmax, ymax]`.
'''
if normalize_coords and ((img_height is None) or (img_width is None)):
raise ValueError("If relative box coordinates are supposed to be converted to absolute coordinates, the decoder needs the image size in order to decode the predictions, but `img_height == {}` and `img_width == {}`".format(img_height, img_width))
# 1: Convert the box coordinates from the predicted anchor box offsets to predicted absolute coordinates
y_pred_decoded_raw = np.copy(y_pred[:,:,:-8]) # Slice out the classes and the four offsets, throw away the anchor coordinates and variances, resulting in a tensor of shape `[batch, n_boxes, n_classes + 4 coordinates]`
if input_coords == 'centroids':
y_pred_decoded_raw[:,:,[-2,-1]] = np.exp(y_pred_decoded_raw[:,:,[-2,-1]] * y_pred[:,:,[-2,-1]]) # exp(ln(w(pred)/w(anchor)) / w_variance * w_variance) == w(pred) / w(anchor), exp(ln(h(pred)/h(anchor)) / h_variance * h_variance) == h(pred) / h(anchor)
y_pred_decoded_raw[:,:,[-2,-1]] *= y_pred[:,:,[-6,-5]] # (w(pred) / w(anchor)) * w(anchor) == w(pred), (h(pred) / h(anchor)) * h(anchor) == h(pred)
y_pred_decoded_raw[:,:,[-4,-3]] *= y_pred[:,:,[-4,-3]] * y_pred[:,:,[-6,-5]] # (delta_cx(pred) / w(anchor) / cx_variance) * cx_variance * w(anchor) == delta_cx(pred), (delta_cy(pred) / h(anchor) / cy_variance) * cy_variance * h(anchor) == delta_cy(pred)
y_pred_decoded_raw[:,:,[-4,-3]] += y_pred[:,:,[-8,-7]] # delta_cx(pred) + cx(anchor) == cx(pred), delta_cy(pred) + cy(anchor) == cy(pred)
y_pred_decoded_raw = convert_coordinates(y_pred_decoded_raw, start_index=-4, conversion='centroids2corners')
elif input_coords == 'minmax':
y_pred_decoded_raw[:,:,-4:] *= y_pred[:,:,-4:] # delta(pred) / size(anchor) / variance * variance == delta(pred) / size(anchor) for all four coordinates, where 'size' refers to w or h, respectively
y_pred_decoded_raw[:,:,[-4,-3]] *= np.expand_dims(y_pred[:,:,-7] - y_pred[:,:,-8], axis=-1) # delta_xmin(pred) / w(anchor) * w(anchor) == delta_xmin(pred), delta_xmax(pred) / w(anchor) * w(anchor) == delta_xmax(pred)
y_pred_decoded_raw[:,:,[-2,-1]] *= np.expand_dims(y_pred[:,:,-5] - y_pred[:,:,-6], axis=-1) # delta_ymin(pred) / h(anchor) * h(anchor) == delta_ymin(pred), delta_ymax(pred) / h(anchor) * h(anchor) == delta_ymax(pred)
y_pred_decoded_raw[:,:,-4:] += y_pred[:,:,-8:-4] # delta(pred) + anchor == pred for all four coordinates
y_pred_decoded_raw = convert_coordinates(y_pred_decoded_raw, start_index=-4, conversion='minmax2corners')
elif input_coords == 'corners':
y_pred_decoded_raw[:,:,-4:] *= y_pred[:,:,-4:] # delta(pred) / size(anchor) / variance * variance == delta(pred) / size(anchor) for all four coordinates, where 'size' refers to w or h, respectively
y_pred_decoded_raw[:,:,[-4,-2]] *= np.expand_dims(y_pred[:,:,-6] - y_pred[:,:,-8], axis=-1) # delta_xmin(pred) / w(anchor) * w(anchor) == delta_xmin(pred), delta_xmax(pred) / w(anchor) * w(anchor) == delta_xmax(pred)
y_pred_decoded_raw[:,:,[-3,-1]] *= np.expand_dims(y_pred[:,:,-5] - y_pred[:,:,-7], axis=-1) # delta_ymin(pred) / h(anchor) * h(anchor) == delta_ymin(pred), delta_ymax(pred) / h(anchor) * h(anchor) == delta_ymax(pred)
y_pred_decoded_raw[:,:,-4:] += y_pred[:,:,-8:-4] # delta(pred) + anchor == pred for all four coordinates
else:
raise ValueError("Unexpected value for `input_coords`. Supported input coordinate formats are 'minmax', 'corners' and 'centroids'.")
# 2: If the model predicts normalized box coordinates and they are supposed to be converted back to absolute coordinates, do that
if normalize_coords:
y_pred_decoded_raw[:,:,[-4,-2]] *= img_width # Convert xmin, xmax back to absolute coordinates
y_pred_decoded_raw[:,:,[-3,-1]] *= img_height # Convert ymin, ymax back to absolute coordinates
# 3: Apply confidence thresholding and non-maximum suppression per class
n_classes = y_pred_decoded_raw.shape[-1] - 4 # The number of classes is the length of the last axis minus the four box coordinates
y_pred_decoded = [] # Store the final predictions in this list
for batch_item in y_pred_decoded_raw: # `batch_item` has shape `[n_boxes, n_classes + 4 coords]`
pred = [] # Store the final predictions for this batch item here
for class_id in range(1, n_classes): # For each class except the background class (which has class ID 0)...
single_class = batch_item[:,[class_id, -4, -3, -2, -1]] # ...keep only the confidences for that class, making this an array of shape `[n_boxes, 5]` and...
threshold_met = single_class[single_class[:,0] > confidence_thresh] # ...keep only those boxes with a confidence above the set threshold.
if threshold_met.shape[0] > 0: # If any boxes made the threshold...
maxima = _greedy_nms(threshold_met, iou_threshold=iou_threshold, coords='corners') # ...perform NMS on them.
maxima_output = np.zeros((maxima.shape[0], maxima.shape[1] + 1)) # Expand the last dimension by one element to have room for the class ID. This is now an arrray of shape `[n_boxes, 6]`
maxima_output[:,0] = class_id # Write the class ID to the first column...
maxima_output[:,1:] = maxima # ...and write the maxima to the other columns...
pred.append(maxima_output) # ...and append the maxima for this class to the list of maxima for this batch item.
# Once we're through with all classes, keep only the `top_k` maxima with the highest scores
if pred: # If there are any predictions left after confidence-thresholding...
pred = np.concatenate(pred, axis=0)
if pred.shape[0] > top_k: # If we have more than `top_k` results left at this point, otherwise there is nothing to filter,...
top_k_indices = np.argpartition(pred[:,1], kth=pred.shape[0]-top_k, axis=0)[pred.shape[0]-top_k:] # ...get the indices of the `top_k` highest-score maxima...
pred = pred[top_k_indices] # ...and keep only those entries of `pred`...
y_pred_decoded.append(pred) # ...and now that we're done, append the array of final predictions for this batch item to the output list
return y_pred_decoded
def decode_y2(y_pred,
confidence_thresh=0.5,
iou_threshold=0.45,
top_k='all',
input_coords='centroids',
normalize_coords=False,
img_height=None,
img_width=None):
'''
Convert model prediction output back to a format that contains only the positive box predictions
(i.e. the same format that `enconde_y()` takes as input).
Optionally performs confidence thresholding and greedy non-maximum suppression after the decoding stage.
Note that the decoding procedure used here is not the same as the procedure used in the original Caffe implementation.
For each box, the procedure used here assigns the box's highest confidence as its predicted class. Then it removes
all boxes for which the highest confidence is the background class. This results in less work for the subsequent
non-maximum suppression, because the vast majority of the predictions will be filtered out just by the fact that
their highest confidence is for the background class. It is much more efficient than the procedure of the original
implementation, but the results may also differ.
Arguments:
y_pred (array): The prediction output of the SSD model, expected to be a Numpy array
of shape `(batch_size, #boxes, #classes + 4 + 4 + 4)`, where `#boxes` is the total number of
boxes predicted by the model per image and the last axis contains
`[one-hot vector for the classes, 4 predicted coordinate offsets, 4 anchor box coordinates, 4 variances]`.
confidence_thresh (float, optional): A float in [0,1), the minimum classification confidence in any positive
class required for a given box to be considered a positive prediction. A lower value will result
in better recall, while a higher value will result in better precision. Do not use this parameter with the
goal to combat the inevitably many duplicates that an SSD will produce, the subsequent non-maximum suppression
stage will take care of those. Defaults to 0.5.
iou_threshold (float, optional): `None` or a float in [0,1]. If `None`, no non-maximum suppression will be
performed. If not `None`, greedy NMS will be performed after the confidence thresholding stage, meaning
all boxes with a Jaccard similarity of greater than `iou_threshold` with a locally maximal box will be removed
from the set of predictions, where 'maximal' refers to the box score. Defaults to 0.45.
top_k (int, optional): 'all' or an integer with number of highest scoring predictions to be kept for each batch item
after the non-maximum suppression stage. Defaults to 'all', in which case all predictions left after the NMS stage
will be kept.
input_coords (str, optional): The box coordinate format that the model outputs. Can be either 'centroids'
for the format `(cx, cy, w, h)` (box center coordinates, width, and height), 'minmax' for the format
`(xmin, xmax, ymin, ymax)`, or 'corners' for the format `(xmin, ymin, xmax, ymax)`. Defaults to 'centroids'.
normalize_coords (bool, optional): Set to `True` if the model outputs relative coordinates (i.e. coordinates in [0,1])
and you wish to transform these relative coordinates back to absolute coordinates. If the model outputs
relative coordinates, but you do not want to convert them back to absolute coordinates, set this to `False`.
Do not set this to `True` if the model already outputs absolute coordinates, as that would result in incorrect
coordinates. Requires `img_height` and `img_width` if set to `True`. Defaults to `False`.
img_height (int, optional): The height of the input images. Only needed if `normalize_coords` is `True`.
img_width (int, optional): The width of the input images. Only needed if `normalize_coords` is `True`.
Returns:
A python list of length `batch_size` where each list element represents the predicted boxes
for one image and contains a Numpy array of shape `(boxes, 6)` where each row is a box prediction for
a non-background class for the respective image in the format `[class_id, confidence, xmin, xmax, ymin, ymax]`.
'''
if normalize_coords and ((img_height is None) or (img_width is None)):
raise ValueError("If relative box coordinates are supposed to be converted to absolute coordinates, the decoder needs the image size in order to decode the predictions, but `img_height == {}` and `img_width == {}`".format(img_height, img_width))
# 1: Convert the classes from one-hot encoding to their class ID
y_pred_converted = np.copy(y_pred[:,:,-14:-8]) # Slice out the four offset predictions plus two elements whereto we'll write the class IDs and confidences in the next step
y_pred_converted[:,:,0] = np.argmax(y_pred[:,:,:-12], axis=-1) # The indices of the highest confidence values in the one-hot class vectors are the class ID
y_pred_converted[:,:,1] = np.amax(y_pred[:,:,:-12], axis=-1) # Store the confidence values themselves, too
# 2: Convert the box coordinates from the predicted anchor box offsets to predicted absolute coordinates
if input_coords == 'centroids':
y_pred_converted[:,:,[4,5]] = np.exp(y_pred_converted[:,:,[4,5]] * y_pred[:,:,[-2,-1]]) # exp(ln(w(pred)/w(anchor)) / w_variance * w_variance) == w(pred) / w(anchor), exp(ln(h(pred)/h(anchor)) / h_variance * h_variance) == h(pred) / h(anchor)
y_pred_converted[:,:,[4,5]] *= y_pred[:,:,[-6,-5]] # (w(pred) / w(anchor)) * w(anchor) == w(pred), (h(pred) / h(anchor)) * h(anchor) == h(pred)
y_pred_converted[:,:,[2,3]] *= y_pred[:,:,[-4,-3]] * y_pred[:,:,[-6,-5]] # (delta_cx(pred) / w(anchor) / cx_variance) * cx_variance * w(anchor) == delta_cx(pred), (delta_cy(pred) / h(anchor) / cy_variance) * cy_variance * h(anchor) == delta_cy(pred)
y_pred_converted[:,:,[2,3]] += y_pred[:,:,[-8,-7]] # delta_cx(pred) + cx(anchor) == cx(pred), delta_cy(pred) + cy(anchor) == cy(pred)
y_pred_converted = convert_coordinates(y_pred_converted, start_index=-4, conversion='centroids2corners')
elif input_coords == 'minmax':
y_pred_converted[:,:,2:] *= y_pred[:,:,-4:] # delta(pred) / size(anchor) / variance * variance == delta(pred) / size(anchor) for all four coordinates, where 'size' refers to w or h, respectively
y_pred_converted[:,:,[2,3]] *= np.expand_dims(y_pred[:,:,-7] - y_pred[:,:,-8], axis=-1) # delta_xmin(pred) / w(anchor) * w(anchor) == delta_xmin(pred), delta_xmax(pred) / w(anchor) * w(anchor) == delta_xmax(pred)
y_pred_converted[:,:,[4,5]] *= np.expand_dims(y_pred[:,:,-5] - y_pred[:,:,-6], axis=-1) # delta_ymin(pred) / h(anchor) * h(anchor) == delta_ymin(pred), delta_ymax(pred) / h(anchor) * h(anchor) == delta_ymax(pred)
y_pred_converted[:,:,2:] += y_pred[:,:,-8:-4] # delta(pred) + anchor == pred for all four coordinates
y_pred_converted = convert_coordinates(y_pred_converted, start_index=-4, conversion='minmax2corners')
elif input_coords == 'corners':
y_pred_converted[:,:,2:] *= y_pred[:,:,-4:] # delta(pred) / size(anchor) / variance * variance == delta(pred) / size(anchor) for all four coordinates, where 'size' refers to w or h, respectively
y_pred_converted[:,:,[2,4]] *= np.expand_dims(y_pred[:,:,-6] - y_pred[:,:,-8], axis=-1) # delta_xmin(pred) / w(anchor) * w(anchor) == delta_xmin(pred), delta_xmax(pred) / w(anchor) * w(anchor) == delta_xmax(pred)
y_pred_converted[:,:,[3,5]] *= np.expand_dims(y_pred[:,:,-5] - y_pred[:,:,-7], axis=-1) # delta_ymin(pred) / h(anchor) * h(anchor) == delta_ymin(pred), delta_ymax(pred) / h(anchor) * h(anchor) == delta_ymax(pred)
y_pred_converted[:,:,2:] += y_pred[:,:,-8:-4] # delta(pred) + anchor == pred for all four coordinates
else:
raise ValueError("Unexpected value for `coords`. Supported values are 'minmax', 'corners' and 'centroids'.")
# 3: If the model predicts normalized box coordinates and they are supposed to be converted back to absolute coordinates, do that
if normalize_coords:
y_pred_converted[:,:,[2,4]] *= img_width # Convert xmin, xmax back to absolute coordinates
y_pred_converted[:,:,[3,5]] *= img_height # Convert ymin, ymax back to absolute coordinates
# 4: Decode our huge `(batch, #boxes, 6)` tensor into a list of length `batch` where each list entry is an array containing only the positive predictions
y_pred_decoded = []
for batch_item in y_pred_converted: # For each image in the batch...
boxes = batch_item[np.nonzero(batch_item[:,0])] # ...get all boxes that don't belong to the background class,...
boxes = boxes[boxes[:,1] >= confidence_thresh] # ...then filter out those positive boxes for which the prediction confidence is too low and after that...
if iou_threshold: # ...if an IoU threshold is set...
boxes = _greedy_nms2(boxes, iou_threshold=iou_threshold, coords='corners') # ...perform NMS on the remaining boxes.
if top_k != 'all' and boxes.shape[0] > top_k: # If we have more than `top_k` results left at this point...
top_k_indices = np.argpartition(boxes[:,1], kth=boxes.shape[0]-top_k, axis=0)[boxes.shape[0]-top_k:] # ...get the indices of the `top_k` highest-scoring boxes...
boxes = boxes[top_k_indices] # ...and keep only those boxes...
y_pred_decoded.append(boxes) # ...and now that we're done, append the array of final predictions for this batch item to the output list
return y_pred_decoded
class SSDBoxEncoder:
'''
A class to transform ground truth labels for object detection in images
(2D bounding box coordinates and class labels) to the format required for
training an SSD model, and to transform predictions of the SSD model back
to the original format of the input labels.
In the process of encoding ground truth labels, a template of anchor boxes
is being built, which are subsequently matched to the ground truth boxes
via an intersection-over-union threshold criterion.
'''
def __init__(self,
img_height,
img_width,
n_classes,
predictor_sizes,
min_scale=0.1,
max_scale=0.9,
scales=None,
aspect_ratios_global=[0.5, 1.0, 2.0],
aspect_ratios_per_layer=None,
two_boxes_for_ar1=True,
steps=None,
offsets=None,
limit_boxes=False,
variances=[1.0, 1.0, 1.0, 1.0],
pos_iou_threshold=0.5,
neg_iou_threshold=0.3,
coords='centroids',
normalize_coords=False):
'''
Arguments:
img_height (int): The height of the input images.
img_width (int): The width of the input images.
n_classes (int): The number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO.
predictor_sizes (list): A list of int-tuples of the format `(height, width)`
containing the output heights and widths of the convolutional predictor layers.
min_scale (float, optional): The smallest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images. Defaults to 0.1. Note that you should set the scaling factors
such that the resulting anchor box sizes correspond to the sizes of the objects you are trying
to detect. Must be >0.
max_scale (float, optional): The largest scaling factor for the size of the anchor boxes as a fraction
of the shorter side of the input images. All scaling factors between the smallest and the
largest will be linearly interpolated. Note that the second to last of the linearly interpolated
scaling factors will actually be the scaling factor for the last predictor layer, while the last
scaling factor is used for the second box for aspect ratio 1 in the last predictor layer
if `two_boxes_for_ar1` is `True`. Defaults to 0.9. Note that you should set the scaling factors
such that the resulting anchor box sizes correspond to the sizes of the objects you are trying
to detect. Must be greater than or equal to `min_scale`.
scales (list, optional): A list of floats >0 containing scaling factors per convolutional predictor layer.
This list must be one element longer than the number of predictor layers. The first `k` elements are the
scaling factors for the `k` predictor layers, while the last element is used for the second box
for aspect ratio 1 in the last predictor layer if `two_boxes_for_ar1` is `True`. This additional
last scaling factor must be passed either way, even if it is not being used.
Defaults to `None`. If a list is passed, this argument overrides `min_scale` and
`max_scale`. All scaling factors must be greater than zero. Note that you should set the scaling factors
such that the resulting anchor box sizes correspond to the sizes of the objects you are trying
to detect.
aspect_ratios_global (list, optional): The list of aspect ratios for which anchor boxes are to be
generated. This list is valid for all prediction layers. Defaults to [0.5, 1.0, 2.0]. Note that you should
set the aspect ratios such that the resulting anchor box shapes very roughly correspond to the shapes of the
objects you are trying to detect. For many standard detection tasks, the default values will yield good
results.
aspect_ratios_per_layer (list, optional): A list containing one aspect ratio list for each prediction layer.
If a list is passed, it overrides `aspect_ratios_global`. Defaults to `None`. Note that you should
set the aspect ratios such that the resulting anchor box shapes very roughly correspond to the shapes of the
objects you are trying to detect. For many standard detection tasks, the default values will yield good
results.
two_boxes_for_ar1 (bool, optional): Only relevant for aspect ratios lists that contain 1. Will be ignored otherwise.
If `True`, two anchor boxes will be generated for aspect ratio 1. The first will be generated
using the scaling factor for the respective layer, the second one will be generated using
geometric mean of said scaling factor and next bigger scaling factor.
steps (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either ints/floats or tuples of two ints/floats. These numbers represent for each predictor layer how many
pixels apart the anchor box center points should be vertically and horizontally along the spatial grid over
the image. If the list contains ints/floats, then that value will be used for both spatial dimensions.
If the list contains tuples of two ints/floats, then they represent `(step_height, step_width)`.
If no steps are provided, then they will be computed such that the anchor box center points will form an
equidistant grid within the image dimensions. Defaults to `None`.
offsets (list, optional): `None` or a list with as many elements as there are predictor layers. The elements can be
either floats or tuples of two floats. These numbers represent for each predictor layer how many
pixels from the top and left boarders of the image the top-most and left-most anchor box center points should be
as a fraction of `steps`. The last bit is important: The offsets are not absolute pixel values, but fractions
of the step size specified in the `steps` argument. If the list contains floats, then that value will
be used for both spatial dimensions. If the list contains tuples of two floats, then they represent
`(vertical_offset, horizontal_offset)`. If no offsets are provided, then they will default to 0.5 of the step size.
Defaults to `None`.
limit_boxes (bool, optional): If `True`, limits box coordinates to stay within image boundaries.
Defaults to `True`.
variances (list, optional): A list of 4 floats >0 with scaling factors (actually it's not factors but divisors
to be precise) for the encoded ground truth (i.e. target) box coordinates. A variance value of 1.0 would apply
no scaling at all to the targets, while values in (0,1) upscale the encoded targets and values greater than 1.0
downscale the encoded targets. If you want to reproduce the configuration of the original SSD,
set this to `[0.1, 0.1, 0.2, 0.2]`, provided the coordinate format is 'centroids'. Defaults to `[1.0, 1.0, 1.0, 1.0]`.
pos_iou_threshold (float, optional): The intersection-over-union similarity threshold that must be
met in order to match a given ground truth box to a given anchor box. Defaults to 0.5.
neg_iou_threshold (float, optional): The maximum allowed intersection-over-union similarity of an
anchor box with any ground truth box to be labeled a negative (i.e. background) box. If an
anchor box is neither a positive, nor a negative box, it will be ignored during training.
coords (str, optional): The box coordinate format to be used internally in the model (i.e. this is not the input format
of the ground truth labels). Can be either 'centroids' for the format `(cx, cy, w, h)` (box center coordinates, width,
and height), 'minmax' for the format `(xmin, xmax, ymin, ymax)`, or 'corners' for the format `(xmin, ymin, xmax, ymax)`.
Defaults to 'centroids'.
normalize_coords (bool, optional): If `True`, the encoder uses relative instead of absolute coordinates.
This means instead of using absolute tartget coordinates, the encoder will scale all coordinates to be within [0,1].
This way learning becomes independent of the input image size. Defaults to `False`.
'''
predictor_sizes = np.array(predictor_sizes)
if len(predictor_sizes.shape) == 1:
predictor_sizes = np.expand_dims(predictor_sizes, axis=0)
if (min_scale is None or max_scale is None) and scales is None:
raise ValueError("Either `min_scale` and `max_scale` or `scales` need to be specified.")
if scales:
if (len(scales) != len(predictor_sizes)+1): # Must be two nested `if` statements since `list` and `bool` cannot be combined by `&`
raise ValueError("It must be either scales is None or len(scales) == len(predictor_sizes)+1, but len(scales) == {} and len(predictor_sizes)+1 == {}".format(len(scales), len(predictor_sizes)+1))
scales = np.array(scales)
if np.any(scales <= 0):
raise ValueError("All values in `scales` must be greater than 0, but the passed list of scales is {}".format(scales))
else: # If no list of scales was passed, we need to make sure that `min_scale` and `max_scale` are valid values.
if not 0 < min_scale <= max_scale:
raise ValueError("It must be 0 < min_scale <= max_scale, but it is min_scale = {} and max_scale = {}".format(min_scale, max_scale))
if not (aspect_ratios_per_layer is None):
if (len(aspect_ratios_per_layer) != len(predictor_sizes)): # Must be two nested `if` statements since `list` and `bool` cannot be combined by `&`
raise ValueError("It must be either aspect_ratios_per_layer is None or len(aspect_ratios_per_layer) == len(predictor_sizes), but len(aspect_ratios_per_layer) == {} and len(predictor_sizes) == {}".format(len(aspect_ratios_per_layer), len(predictor_sizes)))
for aspect_ratios in aspect_ratios_per_layer:
if np.any(np.array(aspect_ratios) <= 0):
raise ValueError("All aspect ratios must be greater than zero.")
else:
if (aspect_ratios_global is None):
raise ValueError("At least one of `aspect_ratios_global` and `aspect_ratios_per_layer` must not be `None`.")
if np.any(np.array(aspect_ratios_global) <= 0):
raise ValueError("All aspect ratios must be greater than zero.")
if len(variances) != 4:
raise ValueError("4 variance values must be pased, but {} values were received.".format(len(variances)))
variances = np.array(variances)
if np.any(variances <= 0):
raise ValueError("All variances must be >0, but the variances given are {}".format(variances))
if neg_iou_threshold > pos_iou_threshold:
raise ValueError("It cannot be `neg_iou_threshold > pos_iou_threshold`.")
if not (coords == 'minmax' or coords == 'centroids' or coords == 'corners'):
raise ValueError("Unexpected value for `coords`. Supported values are 'minmax', 'corners' and 'centroids'.")
if (not (steps is None)) and (len(steps) != len(predictor_sizes)):
raise ValueError("You must provide at least one step value per predictor layer.")
if (not (offsets is None)) and (len(offsets) != len(predictor_sizes)):
raise ValueError("You must provide at least one offset value per predictor layer.")
self.img_height = img_height
self.img_width = img_width
self.n_classes = n_classes + 1
self.predictor_sizes = predictor_sizes
self.min_scale = min_scale
self.max_scale = max_scale
if (scales is None):
self.scales = np.linspace(self.min_scale, self.max_scale, len(self.predictor_sizes)+1)
else:
# If a list of scales is given explicitly, we'll use that instead of computing it from `min_scale` and `max_scale`.
self.scales = scales
if (aspect_ratios_per_layer is None):
self.aspect_ratios = [aspect_ratios_global] * len(predictor_sizes)
else:
# If aspect ratios are given per layer, we'll use those.
self.aspect_ratios = aspect_ratios_per_layer
self.two_boxes_for_ar1 = two_boxes_for_ar1
if (not steps is None):
self.steps = steps
else:
self.steps = [None] * len(predictor_sizes)
if (not offsets is None):
self.offsets = offsets
else:
self.offsets = [None] * len(predictor_sizes)
self.limit_boxes = limit_boxes
self.variances = variances
self.pos_iou_threshold = pos_iou_threshold
self.neg_iou_threshold = neg_iou_threshold
self.coords = coords
self.normalize_coords = normalize_coords
# Compute the number of boxes per cell.
if aspect_ratios_per_layer:
self.n_boxes = []
for aspect_ratios in aspect_ratios_per_layer:
if (1 in aspect_ratios) & two_boxes_for_ar1:
self.n_boxes.append(len(aspect_ratios) + 1)
else:
self.n_boxes.append(len(aspect_ratios))
else:
if (1 in aspect_ratios_global) & two_boxes_for_ar1:
self.n_boxes = len(aspect_ratios_global) + 1
else:
self.n_boxes = len(aspect_ratios_global)
# Compute the anchor boxes for all the predictor layers. We only have to do this once
# as the anchor boxes depend only on the model configuration, not on the input data.
# For each conv predictor layer (i.e. for each scale factor)the tensors for that lauer's
# anchor boxes will have the shape `(feature_map_height, feature_map_width, n_boxes, 4)`.
self.boxes_list = [] # This will contain the anchor boxes for each predicotr layer.
self.wh_list_diag = [] # Box widths and heights for each predictor layer
self.steps_diag = [] # Horizontal and vertical distances between any two boxes for each predictor layer
self.offsets_diag = [] # Offsets for each predictor layer
self.centers_diag = [] # Anchor box center points as `(cy, cx)` for each predictor layer
for i in range(len(self.predictor_sizes)):
boxes, center, wh, step, offset = self.generate_anchor_boxes_for_layer(feature_map_size=self.predictor_sizes[i],
aspect_ratios=self.aspect_ratios[i],
this_scale=self.scales[i],
next_scale=self.scales[i+1],
this_steps=self.steps[i],
this_offsets=self.offsets[i],
diagnostics=True)
self.boxes_list.append(boxes)
self.wh_list_diag.append(wh)
self.steps_diag.append(step)
self.offsets_diag.append(offset)
self.centers_diag.append(center)
def generate_anchor_boxes_for_layer(self,
feature_map_size,
aspect_ratios,
this_scale,
next_scale,
this_steps=None,
this_offsets=None,
diagnostics=False):
'''
Compute an array of the spatial positions and sizes of the anchor boxes for one predictor layer
of size `feature_map_size == [feature_map_height, feature_map_width]`.
Arguments:
feature_map_size (tuple): A list or tuple `[feature_map_height, feature_map_width]` with the spatial
dimensions of the feature map for which to generate the anchor boxes.
aspect_ratios (list): A list of floats, the aspect ratios for which anchor boxes are to be generated.
All list elements must be unique.
this_scale (float): A float in [0, 1], the scaling factor for the size of the generate anchor boxes
as a fraction of the shorter side of the input image.
next_scale (float): A float in [0, 1], the next larger scaling factor. Only relevant if
`self.two_boxes_for_ar1 == True`.
diagnostics (bool, optional): If true, the following additional outputs will be returned:
1) A list of the center point `x` and `y` coordinates for each spatial location.
2) A list containing `(width, height)` for each box aspect ratio.
3) A tuple containing `(step_height, step_width)`
4) A tuple containing `(offset_height, offset_width)`
This information can be useful to understand in just a few numbers what the generated grid of
anchor boxes actually looks like, i.e. how large the different boxes are and how dense
their spatial distribution is, in order to determine whether the box grid covers the input images
appropriately and whether the box sizes are appropriate to fit the sizes of the objects
to be detected.
Returns:
A 4D Numpy tensor of shape `(feature_map_height, feature_map_width, n_boxes_per_cell, 4)` where the
last dimension contains `(xmin, xmax, ymin, ymax)` for each anchor box in each cell of the feature map.
'''
# Compute box width and height for each aspect ratio.
# The shorter side of the image will be used to compute `w` and `h` using `scale` and `aspect_ratios`.
size = min(self.img_height, self.img_width)
# Compute the box widths and and heights for all aspect ratios
wh_list = []
for ar in aspect_ratios:
if (ar == 1):
# Compute the regular anchor box for aspect ratio 1.
box_height = box_width = this_scale * size
wh_list.append((box_width, box_height))
if self.two_boxes_for_ar1:
# Compute one slightly larger version using the geometric mean of this scale value and the next.
box_height = box_width = np.sqrt(this_scale * next_scale) * size
wh_list.append((box_width, box_height))
else:
box_width = this_scale * size * np.sqrt(ar)
box_height = this_scale * size / np.sqrt(ar)
wh_list.append((box_width, box_height))
wh_list = np.array(wh_list)
n_boxes = len(wh_list)
# Compute the grid of box center points. They are identical for all aspect ratios.
# Compute the step sizes, i.e. how far apart the anchor box center points will be vertically and horizontally.
if (this_steps is None):
step_height = self.img_height / feature_map_size[0]
step_width = self.img_width / feature_map_size[1]
else:
if isinstance(this_steps, (list, tuple)) and (len(this_steps) == 2):
step_height = this_steps[0]
step_width = this_steps[1]
elif isinstance(this_steps, (int, float)):
step_height = this_steps
step_width = this_steps
# Compute the offsets, i.e. at what pixel values the first anchor box center point will be from the top and from the left of the image.
if (this_offsets is None):
offset_height = 0.5
offset_width = 0.5
else:
if isinstance(this_offsets, (list, tuple)) and (len(this_offsets) == 2):
offset_height = this_offsets[0]
offset_width = this_offsets[1]
elif isinstance(this_offsets, (int, float)):
offset_height = this_offsets
offset_width = this_offsets
# Now that we have the offsets and step sizes, compute the grid of anchor box center points.
cy = np.linspace(offset_height * step_height, (offset_height + feature_map_size[0] - 1) * step_height, feature_map_size[0])
cx = np.linspace(offset_width * step_width, (offset_width + feature_map_size[1] - 1) * step_width, feature_map_size[1])
cx_grid, cy_grid = np.meshgrid(cx, cy)
cx_grid = np.expand_dims(cx_grid, -1) # This is necessary for np.tile() to do what we want further down
cy_grid = np.expand_dims(cy_grid, -1) # This is necessary for np.tile() to do what we want further down
# Create a 4D tensor template of shape `(feature_map_height, feature_map_width, n_boxes, 4)`
# where the last dimension will contain `(cx, cy, w, h)`
boxes_tensor = np.zeros((feature_map_size[0], feature_map_size[1], n_boxes, 4))
boxes_tensor[:, :, :, 0] = np.tile(cx_grid, (1, 1, n_boxes)) # Set cx
boxes_tensor[:, :, :, 1] = np.tile(cy_grid, (1, 1, n_boxes)) # Set cy
boxes_tensor[:, :, :, 2] = wh_list[:, 0] # Set w
boxes_tensor[:, :, :, 3] = wh_list[:, 1] # Set h
# Convert `(cx, cy, w, h)` to `(xmin, ymin, xmax, ymax)`
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='centroids2corners')
# If `limit_boxes` is enabled, clip the coordinates to lie within the image boundaries
if self.limit_boxes:
x_coords = boxes_tensor[:,:,:,[0, 2]]
x_coords[x_coords >= self.img_width] = self.img_width - 1
x_coords[x_coords < 0] = 0
boxes_tensor[:,:,:,[0, 2]] = x_coords
y_coords = boxes_tensor[:,:,:,[1, 3]]
y_coords[y_coords >= self.img_height] = self.img_height - 1
y_coords[y_coords < 0] = 0
boxes_tensor[:,:,:,[1, 3]] = y_coords
# `normalize_coords` is enabled, normalize the coordinates to be within [0,1]
if self.normalize_coords:
boxes_tensor[:, :, :, [0, 2]] /= self.img_width
boxes_tensor[:, :, :, [1, 3]] /= self.img_height
# TODO: Implement box limiting directly for `(cx, cy, w, h)` so that we don't have to unnecessarily convert back and forth.
if self.coords == 'centroids':
# Convert `(xmin, ymin, xmax, ymax)` back to `(cx, cy, w, h)`.
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2centroids')
elif self.coords == 'minmax':
# Convert `(xmin, ymin, xmax, ymax)` to `(xmin, xmax, ymin, ymax).
boxes_tensor = convert_coordinates(boxes_tensor, start_index=0, conversion='corners2minmax')
if diagnostics:
return boxes_tensor, (cy, cx), wh_list, (step_height, step_width), (offset_height, offset_width)
else:
return boxes_tensor
def generate_encode_template(self, batch_size, diagnostics=False):
'''
Produces an encoding template for the ground truth label tensor for a given batch.
Note that all tensor creation, reshaping and concatenation operations performed in this function
and the sub-functions it calls are identical to those performed inside the conv net model. This, of course,
must be the case in order to preserve the spatial meaning of each box prediction, but it's useful to make
yourself aware of this fact and why it is necessary.
In other words, the boxes in `y_encoded` must have a specific order in order correspond to the right spatial
positions and scales of the boxes predicted by the model. The sequence of operations here ensures that `y_encoded`
has this specific form.
Arguments:
batch_size (int): The batch size.
diagnostics (bool, optional): See the documnentation for `generate_anchor_boxes()`. The diagnostic output
here is similar, just for all predictor conv layers.
Returns:
A Numpy array of shape `(batch_size, #boxes, #classes + 12)`, the template into which to encode
the ground truth labels for training. The last axis has length `#classes + 12` because the model
output contains not only the 4 predicted box coordinate offsets, but also the 4 coordinates for
the anchor boxes and the 4 variance values.
'''
# Tile the anchor boxes for each predictor layer across all batch items.
boxes_batch = []
for boxes in self.boxes_list:
# Prepend one dimension to `self.boxes_list` to account for the batch size and tile it along.
# The result will be a 5D tensor of shape `(batch_size, feature_map_height, feature_map_width, n_boxes, 4)`
boxes = np.expand_dims(boxes, axis=0)
boxes = np.tile(boxes, (batch_size, 1, 1, 1, 1))
# Now reshape the 5D tensor above into a 3D tensor of shape
# `(batch, feature_map_height * feature_map_width * n_boxes, 4)`. The resulting
# order of the tensor content will be identical to the order obtained from the reshaping operation
# in our Keras model (we're using the Tensorflow backend, and tf.reshape() and np.reshape()
# use the same default index order, which is C-like index ordering)
boxes = np.reshape(boxes, (batch_size, -1, 4))
boxes_batch.append(boxes)
# Concatenate the anchor tensors from the individual layers to one.
boxes_tensor = np.concatenate(boxes_batch, axis=1)
# 3: Create a template tensor to hold the one-hot class encodings of shape `(batch, #boxes, #classes)`
# It will contain all zeros for now, the classes will be set in the matching process that follows
classes_tensor = np.zeros((batch_size, boxes_tensor.shape[1], self.n_classes))
# 4: Create a tensor to contain the variances. This tensor has the same shape as `boxes_tensor` and simply
# contains the same 4 variance values for every position in the last axis.
variances_tensor = np.zeros_like(boxes_tensor)
variances_tensor += self.variances # Long live broadcasting
# 4: Concatenate the classes, boxes and variances tensors to get our final template for y_encoded. We also need
# another tensor of the shape of `boxes_tensor` as a space filler so that `y_encode_template` has the same
# shape as the SSD model output tensor. The content of this tensor is irrelevant, we'll just use
# `boxes_tensor` a second time.
y_encode_template = np.concatenate((classes_tensor, boxes_tensor, boxes_tensor, variances_tensor), axis=2)
if diagnostics:
return y_encode_template, self.centers_diag, self.wh_list_diag, self.steps_diag, self.offsets_diag
else:
return y_encode_template
def encode_y(self, ground_truth_labels, diagnostics=False):
'''
Convert ground truth bounding box data into a suitable format to train an SSD model.
For each image in the batch, each ground truth bounding box belonging to that image will be compared against each
anchor box in a template with respect to their jaccard similarity. If the jaccard similarity is greater than
or equal to the set threshold, the boxes will be matched, meaning that the ground truth box coordinates and class
will be written to the the specific position of the matched anchor box in the template.
The class for all anchor boxes for which there was no match with any ground truth box will be set to the
background class, except for those anchor boxes whose IoU similarity with any ground truth box is higher than
the set negative threshold (see the `neg_iou_threshold` argument in `__init__()`).
Arguments:
ground_truth_labels (list): A python list of length `batch_size` that contains one 2D Numpy array
for each batch image. Each such array has `k` rows for the `k` ground truth bounding boxes belonging
to the respective image, and the data for each ground truth bounding box has the format
`(class_id, xmin, ymin, xmax, ymax)`, and `class_id` must be an integer greater than 0 for all boxes
as class_id 0 is reserved for the background class.
diagnostics (bool, optional): If `True`, not only the encoded ground truth tensor will be returned,
but also a copy of it with anchor box coordinates in place of the ground truth coordinates.
This can be very useful if you want to visualize which anchor boxes got matched to which ground truth
boxes.
Returns:
`y_encoded`, a 3D numpy array of shape `(batch_size, #boxes, #classes + 4 + 4 + 4)` that serves as the
ground truth label tensor for training, where `#boxes` is the total number of boxes predicted by the
model per image, and the classes are one-hot-encoded. The four elements after the class vecotrs in
the last axis are the box coordinates, the next four elements after that are just dummy elements, and
the last four elements are the variances.
'''
# 1: Generate the template for y_encoded
y_encode_template = self.generate_encode_template(batch_size=len(ground_truth_labels), diagnostics=False)
y_encoded = np.copy(y_encode_template) # We'll write the ground truth box data to this array
# 2: Match the boxes from `ground_truth_labels` to the anchor boxes in `y_encode_template`
# and for each matched box record the ground truth coordinates in `y_encoded`.
# Every time there is no match for a anchor box, record `class_id` 0 in `y_encoded` for that anchor box.
class_vector = np.eye(self.n_classes) # An identity matrix that we'll use as one-hot class vectors
for i in range(y_encode_template.shape[0]): # For each batch item...
available_boxes = np.ones((y_encode_template.shape[1])) # 1 for all anchor boxes that are not yet matched to a ground truth box, 0 otherwise
negative_boxes = np.ones((y_encode_template.shape[1])) # 1 for all negative boxes, 0 otherwise
for true_box in ground_truth_labels[i]: # For each ground truth box belonging to the current batch item...
true_box = true_box.astype(np.float)
if abs(true_box[3] - true_box[1] < 0.001) or abs(true_box[4] - true_box[2] < 0.001): continue # Protect ourselves against bad ground truth data: boxes with width or height equal to zero
if self.normalize_coords:
true_box[[1,3]] /= self.img_width # Normalize xmin and xmax to be within [0,1]
true_box[[2,4]] /= self.img_height # Normalize ymin and ymax to be within [0,1]
if self.coords == 'centroids':
true_box = convert_coordinates(true_box, start_index=1, conversion='corners2centroids')
elif self.coords == 'minmax':
true_box = convert_coordinates(true_box, start_index=1, conversion='corners2minmax')
similarities = iou(y_encode_template[i,:,-12:-8], true_box[1:], coords=self.coords) # The iou similarities for all anchor boxes
negative_boxes[similarities >= self.neg_iou_threshold] = 0 # If a negative box gets an IoU match >= `self.neg_iou_threshold`, it's no longer a valid negative box
similarities *= available_boxes # Filter out anchor boxes which aren't available anymore (i.e. already matched to a different ground truth box)
available_and_thresh_met = np.copy(similarities)
available_and_thresh_met[available_and_thresh_met < self.pos_iou_threshold] = 0 # Filter out anchor boxes which don't meet the iou threshold
assign_indices = np.nonzero(available_and_thresh_met)[0] # Get the indices of the left-over anchor boxes to which we want to assign this ground truth box
if len(assign_indices) > 0: # If we have any matches
y_encoded[i,assign_indices,:-8] = np.concatenate((class_vector[int(true_box[0])], true_box[1:]), axis=0) # Write the ground truth box coordinates and class to all assigned anchor box positions. Remember that the last four elements of `y_encoded` are just dummy entries.
available_boxes[assign_indices] = 0 # Make the assigned anchor boxes unavailable for the next ground truth box
else: # If we don't have any matches
best_match_index = np.argmax(similarities) # Get the index of the best iou match out of all available boxes
y_encoded[i,best_match_index,:-8] = np.concatenate((class_vector[int(true_box[0])], true_box[1:]), axis=0) # Write the ground truth box coordinates and class to the best match anchor box position
available_boxes[best_match_index] = 0 # Make the assigned anchor box unavailable for the next ground truth box
negative_boxes[best_match_index] = 0 # The assigned anchor box is no longer a negative box
# Set the classes of all remaining available anchor boxes to class zero
background_class_indices = np.nonzero(negative_boxes)[0]
y_encoded[i,background_class_indices,0] = 1
# 3: Convert absolute box coordinates to offsets from the anchor boxes and normalize them
if self.coords == 'centroids':
y_encoded[:,:,[-12,-11]] -= y_encode_template[:,:,[-12,-11]] # cx(gt) - cx(anchor), cy(gt) - cy(anchor)
y_encoded[:,:,[-12,-11]] /= y_encode_template[:,:,[-10,-9]] * y_encode_template[:,:,[-4,-3]] # (cx(gt) - cx(anchor)) / w(anchor) / cx_variance, (cy(gt) - cy(anchor)) / h(anchor) / cy_variance
y_encoded[:,:,[-10,-9]] /= y_encode_template[:,:,[-10,-9]] # w(gt) / w(anchor), h(gt) / h(anchor)
y_encoded[:,:,[-10,-9]] = np.log(y_encoded[:,:,[-10,-9]]) / y_encode_template[:,:,[-2,-1]] # ln(w(gt) / w(anchor)) / w_variance, ln(h(gt) / h(anchor)) / h_variance (ln == natural logarithm)
elif self.coords == 'corners':
y_encoded[:,:,-12:-8] -= y_encode_template[:,:,-12:-8] # (gt - anchor) for all four coordinates
y_encoded[:,:,[-12,-10]] /= np.expand_dims(y_encode_template[:,:,-10] - y_encode_template[:,:,-12], axis=-1) # (xmin(gt) - xmin(anchor)) / w(anchor), (xmax(gt) - xmax(anchor)) / w(anchor)
y_encoded[:,:,[-11,-9]] /= np.expand_dims(y_encode_template[:,:,-9] - y_encode_template[:,:,-11], axis=-1) # (ymin(gt) - ymin(anchor)) / h(anchor), (ymax(gt) - ymax(anchor)) / h(anchor)
y_encoded[:,:,-12:-8] /= y_encode_template[:,:,-4:] # (gt - anchor) / size(anchor) / variance for all four coordinates, where 'size' refers to w and h respectively
else:
y_encoded[:,:,-12:-8] -= y_encode_template[:,:,-12:-8] # (gt - anchor) for all four coordinates
y_encoded[:,:,[-12,-11]] /= np.expand_dims(y_encode_template[:,:,-11] - y_encode_template[:,:,-12], axis=-1) # (xmin(gt) - xmin(anchor)) / w(anchor), (xmax(gt) - xmax(anchor)) / w(anchor)
y_encoded[:,:,[-10,-9]] /= np.expand_dims(y_encode_template[:,:,-9] - y_encode_template[:,:,-10], axis=-1) # (ymin(gt) - ymin(anchor)) / h(anchor), (ymax(gt) - ymax(anchor)) / h(anchor)
y_encoded[:,:,-12:-8] /= y_encode_template[:,:,-4:] # (gt - anchor) / size(anchor) / variance for all four coordinates, where 'size' refers to w and h respectively
if diagnostics:
# Here we'll save the matched anchor boxes (i.e. anchor boxes that were matched to a ground truth box, but keeping the anchor box coordinates).
y_matched_anchors = np.copy(y_encoded)
y_matched_anchors[:,:,-12:-8] = 0 # Keeping the anchor box coordinates means setting the offsets to zero.
return y_encoded, y_matched_anchors
else:
return y_encoded
################################################################################
# Debugging tools, not relevant for normal use
################################################################################
# The functions below are for debugging, so you won't normally need them. That is,
# unless you need to debug your model, of course.
def decode_y_debug(y_pred,
confidence_thresh=0.01,
iou_threshold=0.45,
top_k=200,
input_coords='centroids',
normalize_coords=False,
img_height=None,
img_width=None,
variance_encoded_in_target=False):
'''
This decoder performs the same processing as `decode_y()`, but the output format for each left-over
predicted box is `[box_id, class_id, confidence, xmin, ymin, xmax, ymax]`.
That is, in addition to the usual data, each predicted box has the internal index of that box within
the model (`box_id`) prepended to it. This allows you to know exactly which part of the model made a given
box prediction; in particular, it allows you to know which predictor layer made a given prediction.
This can be useful for debugging.