-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathlsoftmax.py
306 lines (275 loc) · 12.4 KB
/
lsoftmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import math
import mxnet as mx
import numpy as np
# MXNET_CPU_WORKER_NTHREADS must be greater than 1 for custom op to work on CPU
os.environ['MXNET_CPU_WORKER_NTHREADS'] = '2'
class LSoftmaxOp(mx.operator.CustomOp):
'''LSoftmax from <Large-Margin Softmax Loss for Convolutional Neural Networks>
'''
def __init__(self, margin, beta, beta_min, scale):
self.margin = int(margin)
self.beta = float(beta)
self.beta_min = float(beta_min)
self.scale = float(scale)
self.c_map = []
self.k_map = []
c_m_n = lambda m, n: math.factorial(n) / math.factorial(m) / math.factorial(n-m)
for i in range(margin+1):
self.c_map.append(c_m_n(i, margin))
self.k_map.append(math.cos(i * math.pi / margin))
def find_k(self, cos_t):
'''find k for cos(theta)
'''
# for numeric issue
eps = 1e-5
le = lambda x, y: x < y or abs(x-y) < eps
for i in range(self.margin):
if le(self.k_map[i+1], cos_t) and le(cos_t, self.k_map[i]):
return i
raise ValueError('can not find k for cos_t = %f'%cos_t)
def calc_cos_mt(self, cos_t):
'''calculate cos(m*theta)
'''
cos_mt = 0
sin2_t = 1 - cos_t * cos_t
flag = -1
for p in range(self.margin / 2 + 1):
flag *= -1
cos_mt += flag * self.c_map[2*p] * pow(cos_t, self.margin-2*p) * pow(sin2_t, p)
return cos_mt
def forward(self, is_train, req, in_data, out_data, aux):
assert len(in_data) == 3
assert len(out_data) == 1
assert len(req) == 1
x, label, w = in_data
x = x.asnumpy()
w = w.asnumpy()
label = label.asnumpy()
# original fully connected
out = x.dot(w.T)
if is_train:
# large margin fully connected
n = label.shape[0]
w_norm = np.linalg.norm(w, axis=1)
x_norm = np.linalg.norm(x, axis=1)
for i in range(n):
j = yi = int(label[i])
f = out[i, yi]
cos_t = f / (w_norm[yi] * x_norm[i])
# calc k and cos_mt
k = self.find_k(cos_t)
cos_mt = self.calc_cos_mt(cos_t)
# f_i_j = (\beta * f_i_j + fo_i_j) / (1 + \beta)
fo_i_j = f
f_i_j = (pow(-1, k) * cos_mt - 2*k) * (w_norm[yi] * x_norm[i])
out[i, yi] = (f_i_j + self.beta * fo_i_j) / (1 + self.beta)
self.assign(out_data[0], req[0], mx.nd.array(out))
def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
assert len(in_data) == 3
assert len(out_grad) == 1
assert len(in_grad) == 3
assert len(req) == 3
x, label, w = in_data
x = x.asnumpy()
w = w.asnumpy()
label = label.asnumpy()
o_grad = out_grad[0].asnumpy()
# original fully connected
x_grad = o_grad.dot(w)
w_grad = o_grad.T.dot(x)
# large margin fully connected
n = label.shape[0] # batch size
m = w.shape[0] # number of classes
margin = self.margin # margin
feature_dim = w.shape[1] # feature dimension
cos_t = np.zeros(n, dtype=np.float32) # cos(theta)
cos_mt = np.zeros(n, dtype=np.float32) # cos(margin * theta)
sin2_t = np.zeros(n, dtype=np.float32) # sin(theta) ^ 2
fo = np.zeros(n, dtype=np.float32) # fo_i = dot(x_i, w_yi)
k = np.zeros(n, dtype=np.int32)
x_norm = np.linalg.norm(x, axis=1)
w_norm = np.linalg.norm(w, axis=1)
for i in range(n):
j = yi = int(label[i])
f = w[yi].dot(x[i])
cos_t[i] = f / (w_norm[yi] * x_norm[i])
k[i] = self.find_k(cos_t[i])
cos_mt[i] = self.calc_cos_mt(cos_t[i])
sin2_t[i] = 1 - cos_t[i]*cos_t[i]
fo[i] = f
# gradient w.r.t. x_i
for i in range(n):
# df / dx at x = x_i, w = w_yi
j = yi = int(label[i])
dcos_dx = w[yi] / (w_norm[yi]*x_norm[i]) - x[i] * fo[i] / (w_norm[yi]*pow(x_norm[i], 3))
dsin2_dx = -2 * cos_t[i] * dcos_dx
dcosm_dx = margin*pow(cos_t[i], margin-1) * dcos_dx # p = 0
flag = 1
for p in range(1, margin / 2 + 1):
flag *= -1
dcosm_dx += flag * self.c_map[2*p] * ( \
p*pow(cos_t[i], margin-2*p)*pow(sin2_t[i], p-1)*dsin2_dx + \
(margin-2*p)*pow(cos_t[i], margin-2*p-1)*pow(sin2_t[i], p)*dcos_dx)
df_dx = (pow(-1, k[i]) * cos_mt[i] - 2*k[i]) * w_norm[yi] / x_norm[i] * x[i] + \
pow(-1, k[i]) * w_norm[yi] * x_norm[i] * dcosm_dx
alpha = 1 / (1 + self.beta)
x_grad[i] += alpha * o_grad[i, yi] * (df_dx - w[yi])
# gradient w.r.t. w_j
for j in range(m):
dw = np.zeros(feature_dim, dtype=np.float32)
for i in range(n):
yi = int(label[i])
if yi == j:
# df / dw at x = x_i, w = w_yi and yi == j
dcos_dw = x[i] / (w_norm[yi]*x_norm[i]) - w[yi] * fo[i] / (x_norm[i]*pow(w_norm[yi], 3))
dsin2_dw = -2 * cos_t[i] * dcos_dw
dcosm_dw = margin*pow(cos_t[i], margin-1) * dcos_dw # p = 0
flag = 1
for p in range(1, margin / 2 + 1):
flag *= -1
dcosm_dw += flag * self.c_map[2*p] * ( \
p*pow(cos_t[i], margin-2*p)*pow(sin2_t[i], p-1)*dsin2_dw + \
(margin-2*p)*pow(cos_t[i], margin-2*p-1)*pow(sin2_t[i], p)*dcos_dw)
df_dw_j = (pow(-1, k[i]) * cos_mt[i] - 2*k[i]) * x_norm[i] / w_norm[yi] * w[yi] + \
pow(-1, k[i]) * w_norm[yi] * x_norm[i] * dcosm_dw
dw += o_grad[i, yi] * (df_dw_j - x[i])
alpha = 1 / (1 + self.beta)
w_grad[j] += alpha * dw
self.assign(in_grad[0], req[0], mx.nd.array(x_grad))
self.assign(in_grad[2], req[2], mx.nd.array(w_grad))
# dirty hack, should also work for multi devices
self.beta *= self.scale
self.beta = max(self.beta, self.beta_min)
@mx.operator.register("LSoftmax")
class LSoftmaxProp(mx.operator.CustomOpProp):
def __init__(self, num_hidden, beta, margin, scale=1, beta_min=0):
super(LSoftmaxProp, self).__init__(need_top_grad=True)
self.margin = int(margin)
self.num_hidden = int(num_hidden)
self.beta = float(beta)
self.beta_min = float(beta_min)
self.scale = float(scale)
def list_arguments(self):
return ['data', 'label', 'weight']
def list_outputs(self):
return ['output']
def infer_shape(self, in_shape):
assert len(in_shape) == 3, "LSoftmaxOp input data: [data, label, weight]"
dshape = in_shape[0]
lshape = in_shape[1]
assert len(dshape) == 2, "data shape should be (batch_size, feature_dim)"
assert len(lshape) == 1, "label shape should be (batch_size,)"
wshape = (self.num_hidden, dshape[1])
oshape = (dshape[0], self.num_hidden)
return [dshape, lshape, wshape], [oshape,], []
def infer_type(self, in_type):
return [in_type[0]]*len(in_type), [in_type[0]]*len(self.list_outputs()), \
[in_type[0]]*len(self.list_auxiliary_states())
def create_operator(self, ctx, shapes, dtypes):
return LSoftmaxOp(margin=self.margin, beta=self.beta, beta_min=self.beta_min, scale=self.scale)
def test_op():
"""test LSoftmax Operator
"""
# build symbol
batch_size = cmd_args.batch_size
embedding_dim = cmd_args.embedding_dim
num_classes = cmd_args.num_classes
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
weight = mx.sym.Variable('weight')
args = {
'data': np.random.normal(0, 1, (batch_size, embedding_dim)),
'weight': np.random.normal(0, 1, (num_classes, embedding_dim)),
'label': np.random.choice(num_classes, batch_size),
}
if cmd_args.op_impl == 'py':
symbol = mx.sym.Custom(data=data, label=label, weight=weight, num_hidden=10,
beta=cmd_args.beta, margin=cmd_args.margin, scale=cmd_args.scale,
op_type='LSoftmax', name='lsoftmax')
else:
symbol = mx.sym.LSoftmax(data=data, label=label, weight=weight, num_hidden=num_classes,
margin=cmd_args.margin, beta=cmd_args.beta, scale=cmd_args.scale,
name='lsoftmax')
data_shape = (batch_size, embedding_dim)
label_shape = (batch_size,)
weight_shape = (num_classes, embedding_dim)
ctx = mx.cpu() if cmd_args.op_impl == 'py' else mx.gpu()
executor = symbol.simple_bind(ctx=ctx, data=data_shape, label=label_shape, weight=weight_shape)
def forward(data, label, weight):
data = mx.nd.array(data, ctx=ctx)
label = mx.nd.array(label, ctx=ctx)
weight = mx.nd.array(weight, ctx=ctx)
executor.forward(is_train=True, data=data, label=label, weight=weight)
return executor.output_dict['lsoftmax_output'].asnumpy()
def backward(out_grad):
executor.backward(out_grads=[mx.nd.array(out_grad, ctx=ctx)])
return executor.grad_dict
def gradient_check(name, i, j):
'''gradient check on x[i, j]
'''
eps = 1e-4
threshold = 1e-2
reldiff = lambda a, b: abs(a-b) / (abs(a) + abs(b))
# calculate by backward
output = forward(data=args['data'], weight=args['weight'], label=args['label'])
grad_dict = backward(output)
grad = grad_dict[name].asnumpy()[i, j]
# calculate by \delta f / 2 * eps
loss = lambda x: np.square(x).sum() / 2
args[name][i, j] -= eps
loss1 = loss(forward(data=args['data'], weight=args['weight'], label=args['label']))
args[name][i, j] += 2 * eps
loss2 = loss(forward(data=args['data'], weight=args['weight'], label=args['label']))
grad_expect = (loss2 - loss1) / (2 * eps)
# check
rel_err = reldiff(grad_expect, grad)
if rel_err > threshold:
print 'gradient check failed'
print 'expected %lf given %lf, relative error %lf'%(grad_expect, grad, rel_err)
return False
else:
print 'gradient check pass'
return True
# test forward
output = forward(data=args['data'], weight=args['weight'], label=args['label'])
diff = args['data'].dot(args['weight'].T) - output
# test backward
# gradient check on data
data_gc_pass = 0
for i in range(args['data'].shape[0]):
for j in range(args['data'].shape[1]):
print 'gradient check on data[%d, %d]'%(i, j)
if gradient_check('data', i, j):
data_gc_pass += 1
# gradient check on weight
weight_gc_pass = 0
for i in range(args['weight'].shape[0]):
for j in range(args['weight'].shape[1]):
print 'gradient check on weight[%d, %d]'%(i, j)
if gradient_check('weight', i, j):
weight_gc_pass += 1
print '===== Summary ====='
print 'gradient on data pass ratio is %lf'%(float(data_gc_pass) / args['data'].size)
print 'gradient on weight pass ratio is %lf'%(float(weight_gc_pass) / args['weight'].size)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=32, help="test batch size")
parser.add_argument('--num-classes', type=int, default=10, help="test number of classes")
parser.add_argument('--embedding-dim', type=int, default=3, help="test embedding dimension")
parser.add_argument('--margin', type=int, default=2, help="test lsoftmax margin")
parser.add_argument('--beta', type=float, default=10, help="test lsoftmax beta")
parser.add_argument('--scale', type=float, default=1, help="beta scale of every mini-batch")
parser.add_argument('--op-impl', type=str, choices=['py', 'cpp'], default='py', help="test op implementation")
cmd_args = parser.parse_args()
print cmd_args
# check
if cmd_args.op_impl == 'cpp':
try:
op_creator = mx.sym.LSoftmax
except AttributeError:
print 'No cpp operator for LSoftmax, Skip test'
import sys
sys.exit(0)
test_op()