-
Notifications
You must be signed in to change notification settings - Fork 7
/
train.py
310 lines (294 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from __future__ import print_function, division
import os
import time
import shutil
import pickle
import logging
import argparse
import datetime
import cv2
import mxnet as mx
from mxnet import nd, autograd as ag, gluon as gl
from mxnet.gluon import nn
import numpy as np
import pandas as pd
from tensorboardX import SummaryWriter
from lib.config import cfg
from lib.dataset import FashionAIKPSDataSet
from lib.model import PoseNet, CascadePoseNet, CascadeCPMNet, load_model
from lib.utils import get_logger, Recorder
class SumL2Loss(gl.loss.Loss):
def __init__(self, ohkm=False, weight=1., batch_axis=0, **kwargs):
super(SumL2Loss, self).__init__(weight, batch_axis, **kwargs)
self.ohkm = ohkm
def hybrid_forward(self, F, pred, label, mask):
pred = F.broadcast_mul(pred, mask)
label = F.broadcast_mul(label, mask)
label = gl.loss._reshape_like(F, label, pred)
loss = F.square(pred - label)
if self.ohkm:
mask = F.topk(F.sum(F.reshape(loss, (0, 0, -1)), axis=2), axis=1, k=5, ret_typ='mask')
mask = F.reshape(mask, (0, 0, 1, 1))
loss = F.broadcast_mul(loss, mask)
loss = gl.loss._apply_weighting(F, loss, self._weight/2, None)
return F.sum(loss, axis=self._batch_axis, exclude=True)
def forward_backward_v2(net, criterions, ctx, packet, is_train=True):
data, ht8, ht8_mask, paf8, paf8_mask = packet
criterion, criterion_ohkm = criterions
# split to gpus
data = gl.utils.split_and_load(data, ctx)
ht8 = gl.utils.split_and_load(ht8, ctx)
ht8_mask = gl.utils.split_and_load(ht8_mask, ctx)
paf8 = gl.utils.split_and_load(paf8 ,ctx)
paf8_mask = gl.utils.split_and_load(paf8_mask ,ctx)
# run
ag.set_recording(is_train)
ag.set_training(is_train)
losses = []
for data_, ht8_, paf8_, ht8_mask_, paf8_mask_ in zip(data, ht8, paf8, ht8_mask, paf8_mask):
# forward
out_ = net(data_)
losses_ = []
num_stage = len(out_)
for i in range(num_stage):
losses_.append(criterion(out_[i][0], ht8_, ht8_mask_))
losses_.append(criterion(out_[i][1], paf8_, paf8_mask_))
losses.append(losses_)
# backward
if is_train:
ag.backward(losses_)
ag.set_recording(False)
ag.set_training(False)
return losses
def forward_backward_v3(net, criterions, ctx, packet, is_train=True):
data, ht4, ht4_mask, paf4, paf4_mask, ht8, ht8_mask, paf8, paf8_mask, ht16, ht16_mask, paf16, paf16_mask = packet
criterion, criterion_ohkm = criterions
ht = [ht4, ht8, ht16]
paf = [paf4, paf8, paf16]
ht_mask = [ht4_mask, ht8_mask, ht16_mask]
paf_mask = [paf4_mask, paf8_mask, paf16_mask]
# split to gpus
data = gl.utils.split_and_load(data, ctx)
ht = [gl.utils.split_and_load(x, ctx) for x in ht]
paf = [gl.utils.split_and_load(x, ctx) for x in paf]
ht_mask = [gl.utils.split_and_load(x, ctx) for x in ht_mask]
paf_mask = [gl.utils.split_and_load(x, ctx) for x in paf_mask]
# run
ag.set_recording(is_train)
ag.set_training(is_train)
losses = []
for idx, data_ in enumerate(data):
# forward
g_ht4, g_paf4, r_ht4, r_paf4, g_ht8, g_paf8, r_ht8, r_paf8, g_ht16, g_paf16, r_ht16, r_paf16 = net(data_)
ht4_, ht8_, ht16_ = [h[idx] for h in ht]
paf4_, paf8_, paf16_ = [p[idx] for p in paf]
ht4_mask_, ht8_mask_, ht16_mask_ = [hm[idx] for hm in ht_mask]
paf4_mask_, paf8_mask_, paf16_mask_ = [pm[idx] for pm in paf_mask]
# loss
losses_ = [criterion(g_ht4, ht4_, ht4_mask_),
criterion_ohkm(r_ht4, ht4_, ht4_mask_),
criterion(g_ht8, ht8_, ht8_mask_),
criterion_ohkm(r_ht8, ht8_, ht8_mask_),
criterion(g_ht16, ht16_, ht16_mask_),
criterion_ohkm(r_ht16, ht16_, ht16_mask_),
criterion(g_paf4, paf4_, paf4_mask_),
criterion(r_paf4, paf4_, paf4_mask_),
criterion(g_paf8, paf8_, paf8_mask_),
criterion(r_paf8, paf8_, paf8_mask_),
criterion(g_paf16, paf16_, paf16_mask_),
criterion(r_paf16, paf16_, paf16_mask_)]
losses.append(losses_)
# backward
if is_train:
ag.backward(losses_)
ag.set_recording(False)
ag.set_training(False)
return losses
def reduce_losses(losses):
n = len(losses)
m = len(losses[0])
ret = np.zeros(m)
for i in range(n):
for j in range(m):
ret[j] += losses[i][j].mean().asscalar()
ret /= n
return ret
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--epoches', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--freq', type=int, default=50)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--wd', type=float, default=1e-4)
parser.add_argument('--optim', type=str, default='adam', choices=['sgd', 'adam'])
parser.add_argument('--seed', type=int, default=666)
parser.add_argument('--steps', type=str, default='1000')
parser.add_argument('--lr-decay', type=float, default=0.1)
parser.add_argument('--backbone', type=str, default='resnet50', choices=['resnet50', 'resnet101'])
parser.add_argument('--model-path', type=str, default='')
parser.add_argument('--prefix', type=str, default='default', help='model description')
parser.add_argument('--version', type=int, default=2, choices=[2, 3, 4], help='model version')
parser.add_argument('--num-stage', type=int, default=3)
parser.add_argument('--num-channel', type=int, default=256)
parser.add_argument('--num-context', type=int, default=2)
parser.add_argument('--scale', type=int, default=0)
parser.add_argument('--ohkm', action='store_true')
args = parser.parse_args()
# seed
mx.random.seed(args.seed)
np.random.seed(args.seed)
# hyper parameters
ctx = [mx.gpu(int(x)) for x in args.gpu.split(',')]
num_ctx = len(ctx)
data_dir = cfg.DATA_DIR
lr = args.lr
wd = args.wd
optim = args.optim
batch_size = args.batch_size
epoches = args.epoches
freq = args.freq
steps = [int(x) for x in args.steps.split(',')]
lr_decay = args.lr_decay
backbone = args.backbone
prefix = args.prefix
model_path = None if args.model_path == '' else args.model_path
num_stage = args.num_stage
num_channel = args.num_channel
num_context = args.num_context
ohkm = args.ohkm
scale = args.scale
version = args.version
if version == 2:
base_name = 'V2.%s-%s-S%d-C%d-C%d-BS%d-%s' % (prefix, backbone, num_stage, num_channel, num_context, batch_size, optim)
elif version == 3:
base_name = 'V3.%s-%s-C%d-BS%d-%s' % (prefix, backbone, num_channel, batch_size, optim)
elif version == 4:
base_name = 'V4.%s-%s-C%d-BS%d-%s' % (prefix, backbone, num_channel, batch_size, optim)
else:
raise RuntimeError('no such version %d'%version)
filename = './tmp/%s.log' % base_name
logger = get_logger(fn=filename)
logger.info(args)
# data
df_train = pd.read_csv(os.path.join(data_dir, 'train.csv'))
df_test = pd.read_csv(os.path.join(data_dir, 'val.csv'))
traindata = FashionAIKPSDataSet(df_train, version=version, is_train=True)
testdata = FashionAIKPSDataSet(df_test, version=version, is_train=False)
trainloader = gl.data.DataLoader(traindata, batch_size=batch_size, shuffle=True, last_batch='discard', num_workers=num_ctx)
testloader = gl.data.DataLoader(testdata, batch_size=batch_size, shuffle=False, last_batch='discard', num_workers=num_ctx)
epoch_size = len(trainloader)
# model
if not model_path:
num_kps = cfg.NUM_LANDMARK
num_limb = len(cfg.PAF_LANDMARK_PAIR)
if version == 2:
net = PoseNet(num_kps=num_kps, num_limb=num_limb, num_stage=num_stage, num_channel=num_channel, num_context=num_context)
creator, featnames, fixed = cfg.BACKBONE_v2[backbone]
elif version == 3:
net = CascadePoseNet(num_kps=num_kps, num_limb=num_limb, num_channel=num_channel, scale=scale)
creator, featnames, fixed = cfg.BACKBONE_v3[backbone]
elif version == 4:
net = CascadeCPMNet(num_kps=num_kps, num_limb=num_limb, num_channel=num_channel, scale=scale)
creator, featnames, fixed = cfg.BACKBONE_v3[backbone]
else:
raise RuntimeError('no such version %d'%version)
net.initialize(mx.init.Normal(), ctx=ctx)
net.init_backbone(creator, featnames, fixed, pretrained=True)
else:
logger.info('Load net from %s', model_path)
net = load_model(model_path, version=version, scale=scale)
net.collect_params().reset_ctx(ctx)
net.hybridize()
criterion = SumL2Loss()
criterion_ohkm = SumL2Loss(ohkm=True)
criterion.hybridize()
criterion_ohkm.hybridize()
if ohkm:
criterions = (criterion, criterion_ohkm)
else:
criterions = (criterion, criterion)
# trainer
steps = [epoch_size * x for x in steps]
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=lr_decay)
if optim == 'sgd':
trainer = gl.trainer.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd, 'momentum': 0.9, 'lr_scheduler': lr_scheduler})
else:
trainer = gl.trainer.Trainer(net.collect_params(), 'adam', {'learning_rate': lr, 'wd': wd, 'lr_scheduler': lr_scheduler})
# logger
log_dir = './log-v%d/%s' % (version, base_name)
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
sw = SummaryWriter(log_dir)
if version == 2:
rds = []
for i in range(num_stage):
rd1 = Recorder('h-%d' % i, freq)
rd2 = Recorder('p-%d' % i, freq)
rds.append(rd1)
rds.append(rd2)
elif version == 3 or version == 4:
rds = [Recorder('G-h-04', freq), Recorder('R-h-04', freq), \
Recorder('G-h-08', freq), Recorder('R-h-08', freq), \
Recorder('G-h-16', freq), Recorder('R-h-16', freq), \
Recorder('G-p-04', freq), Recorder('R-p-04', freq), \
Recorder('G-p-08', freq), Recorder('R-p-08', freq), \
Recorder('G-p-16', freq), Recorder('R-p-16', freq)]
else:
raise RuntimeError('no such version %d'%version)
# meta info
global_step = 0
# forward and backward
if version == 2:
forward_backward = forward_backward_v2
elif version == 3 or version == 4:
forward_backward = forward_backward_v3
else:
raise RuntimeError('no such version %d'%version)
for epoch_idx in range(epoches):
# train part
tic = time.time()
for rd in rds:
rd.reset()
sw.add_scalar('lr', trainer.learning_rate, global_step)
for batch_idx, packet in enumerate(trainloader):
# [(l1, l2, ...), (l1, l2, ...)]
losses = forward_backward(net, criterions, ctx, packet, is_train=True)
trainer.step(batch_size)
# reduce to [l1, l2, ...]
ret = reduce_losses(losses)
for rd, loss in zip(rds, ret):
rd.update(loss)
if batch_idx % freq == freq - 1:
for rd in rds:
name, value = rd.get()
sw.add_scalar('train/' + name, value, global_step)
logger.info('[Epoch %d][Batch %d] %s = %f', epoch_idx + 1, batch_idx + 1, name, value)
global_step += 1
toc = time.time()
speed = (batch_idx + 1) * batch_size / (toc - tic)
logger.info('[Epoch %d][Batch %d] Speed = %.2f sample/sec', epoch_idx + 1, batch_idx + 1, speed)
toc = time.time()
logger.info('[Epoch %d] Global step %d', epoch_idx + 1, global_step - 1)
logger.info('[Epoch %d] Train Cost %.0f sec', epoch_idx + 1, toc - tic)
# test part
tic = time.time()
for rd in rds:
rd.reset()
for batch_idx, packet in enumerate(testloader):
losses = forward_backward(net, criterions, ctx, packet, is_train=False)
ret = reduce_losses(losses)
for rd, loss in zip(rds, ret):
rd.update(loss)
for rd in rds:
name, value = rd.get()
sw.add_scalar('test/' + name, value, global_step)
logger.info('[Epoch %d][Test] %s = %f', epoch_idx + 1, name, value)
toc = time.time()
logger.info('[Epoch %d] Test Cost %.0f sec', epoch_idx + 1, toc - tic)
# save part
save_path = './output/%s-%04d.params' % (base_name, epoch_idx + 1)
net.save_params(save_path)
logger.info('[Epoch %d] Saved to %s', epoch_idx + 1, save_path)
if __name__ == '__main__':
main()