From 63a0e1ba345f992fbe7653a4e190a771d09f2659 Mon Sep 17 00:00:00 2001 From: DecoderLiu <105264284+DecoderLiu@users.noreply.github.com> Date: Wed, 24 May 2023 09:21:38 -0400 Subject: [PATCH] Update research.rst (#1329) --- docs/user/research.rst | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/user/research.rst b/docs/user/research.rst index 1573491e4..8b328489b 100644 --- a/docs/user/research.rst +++ b/docs/user/research.rst @@ -112,6 +112,7 @@ Here is a list of research papers that used DeepXDE. If you would like your pape PINN ---- +#. B\. Fan, E. Qiao, A. Jiao, Z. Gu, W. Li, & L. Lu. `Deep learning for solving and estimating dynamic macro-finance models `_. *arXiv preprint arXiv:2305.09783*, 2023. #. S\. Li, G. Wang, Y. Di, L. Wang, H. Wang, & Q. Zhou. `A physics-informed neural network framework to predict 3D temperature field without labeled data in process of laser metal deposition `_. *Engineering Applications of Artificial Intelligence*, 120, p.105908, 2023. #. M\. Bazmara, M. Silani, & M. Mianroodi. `Physics-informed neural networks for nonlinear bending of 3D functionally graded beam `_. *Structures*, Vol. 49, Elsevier, 2023. #. Y\. Huang, Z. Xu, C. Qian, & L. Liu. `Solving free-surface problems for non-shallow water using boundary and initial conditions-free physics-informed neural network (bif-PINN) `_. *Journal of Computational Physics*, p.112003, 2023. @@ -202,6 +203,7 @@ PINN DeepONet -------- +#. S\. Mao, R. Dong, L. Lu, K. M. Yi, S. Wang, & P. Perdikaris. `PPDONet: Deep operator networks for fast prediction of steady-state solutions in disk-planet systems `_. *arXiv preprint arXiv:2305.11111*, 2023. #. Z\. Jiang, M. Zhu, D. Li, Q. Li, Y. Yuan, & L. Lu. `Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration `_. *arXiv preprint arXiv:2303.04778*, 2023. #. S\. Wang, & P. Perdikaris. `Long-time integration of parametric evolution equations with physics-informed deeponets `_. *Journal of Computational Physics*, 475, p.111855, 2023. #. K\. Kobayashi, J. Daniell, & S. Alam. `Operator learning framework for digital twin and complex engineering systems `_. *arXiv e-prints*, pp.arXiv-2301, 2023.