forked from nkolkin13/STROTSS
-
Notifications
You must be signed in to change notification settings - Fork 1
/
st_helper_maxiter.py
170 lines (124 loc) · 5.53 KB
/
st_helper_maxiter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time
import math
import sys
from glob import glob
import shutil
import os
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
from imageio import imread, imwrite
import utils
from utils import *
from vgg_pt import *
from pyr_lap import *
from stylize_objectives import objective_class
def style_transfer(stylized_im, content_im, style_path, output_path, scl, long_side, mask, content_weight=0., use_guidance=False, regions=0, coords=0, lr=2e-3):
print('[starting style transfer]')
REPORT_INTERVAL = 50
RESAMPLE_FREQ = 1
RESAMPLE_INCREASE_FREQ = 150
MAX_ITER = 250
save_ind = 0
use_pyr=True
#temp_name = './'+output_path.split('/')[-1].split('.')[0]+'_temp.png'
temp_name = './'+output_path.split('/')[-1].split('.')[0]+'_'+str(os.getpid())+'.png'
### Keep track of current output image for GUI ###
canvas = aug_canvas(stylized_im, scl, 0)
imwrite(temp_name, canvas)
shutil.move(temp_name, output_path)
#### Define feature extractor ###
cnn = utils.to_device(Vgg16_pt())
phi = lambda x: cnn.forward(x)
phi2 = lambda x, y, z: cnn.forward_cat(x,z,samps=y,forward_func=cnn.forward)
#### Optimize over laplaccian pyramid instead of pixels directly ####
### Define Optimizer ###
if use_pyr:
s_pyr = dec_lap_pyr(stylized_im,5)
s_pyr = [Variable(li.data,requires_grad=True) for li in s_pyr]
else:
s_pyr = [Variable(stylized_im.data,requires_grad=True)]
optimizer = optim.RMSprop(s_pyr,lr=lr)
### Pre-Extract Content Features ###
z_c = phi(content_im)
### Pre-Extract Style Features from a Folder###
paths = glob(style_path+'*')[::3]
### Create Objective Object ###
objective_wrapper = 0
objective_wrapper = objective_class(objective='remd_dp_g')
z_s_all = []
for ri in range(len(regions[1])):
z_s, style_ims = load_style_folder(phi2, paths, regions,ri, n_samps=-1, subsamps=1000, scale=long_side, inner=5)
z_s_all.append(z_s)
### Extract guidance features if required ###
gs = np.array([0.])
if use_guidance:
gs = load_style_guidance(phi, style_path, coords[:,2:], scale=long_side)
### Randomly choose spatial locations to extract features from ###
if use_pyr:
stylized_im = syn_lap_pyr(s_pyr)
else:
stylized_im = s_pyr[0]
for ri in range(len(regions[0])):
r_temp = regions[0][ri]
r_temp = torch.from_numpy(r_temp).unsqueeze(0).unsqueeze(0).contiguous()
#r = F.upsample(r_temp,(stylized_im.size(3),stylized_im.size(2)),mode='bilinear')[0,0,:,:].numpy()
r = F.interpolate(r_temp,(stylized_im.size(3),stylized_im.size(2)),mode='bilinear',align_corners=True)[0,0,:,:].numpy()
if r.max()<0.1:
r = np.greater(r+1.,0.5)
else:
r = np.greater(r,0.5)
objective_wrapper.init_inds(z_c, z_s_all,r,ri)
if use_guidance:
objective_wrapper.init_g_inds(coords, stylized_im)
scl_start = time.time()
#checkframe=0
for i in range(MAX_ITER):
### zero out gradients and compute output image from pyramid ##
optimizer.zero_grad()
if use_pyr:
stylized_im = syn_lap_pyr(s_pyr)
else:
stylized_im = s_pyr[0]
## Dramatically Resample Large Set of Spatial Locations ##
if i==0 or i%(RESAMPLE_FREQ*10) == 0:
for ri in range(len(regions[0])):
r_temp = regions[0][ri]
r_temp = torch.from_numpy(r_temp).unsqueeze(0).unsqueeze(0).contiguous()
#r = F.upsample(r_temp,(stylized_im.size(3),stylized_im.size(2)),mode='bilinear')[0,0,:,:].numpy()
r = F.interpolate(r_temp,(stylized_im.size(3),stylized_im.size(2)),mode='bilinear',align_corners=True)[0,0,:,:].numpy()
if r.max()<0.1:
r = np.greater(r+1.,0.5)
else:
r = np.greater(r,0.5)
objective_wrapper.init_inds(z_c, z_s_all,r,ri)
## Subsample spatial locations to compute loss over ##
if i==0 or i%RESAMPLE_FREQ == 0:
objective_wrapper.shuffle_feature_inds()
## Extract Features from Current Output
z_x = phi(stylized_im)
## Compute Objective and take gradient step ##
ell = objective_wrapper.eval(z_x, z_c, z_s_all, gs, 0., content_weight=content_weight,moment_weight=1.0)
ell.backward()
optimizer.step()
## Periodically save output image for GUI ###
if (i+1)%REPORT_INTERVAL == 0:
#output iter to see evolution
#checkframe=checkframe+1
#check_name = './'+output_path.split('/')[-1].split('.')[0]+'_scale'+str(scl)+'.'+str(checkframe)+'.png'
#print ('check name : ',check_name)
#imwrite(check_name, canvas)
canvas = aug_canvas(stylized_im, scl, i)
imwrite(temp_name, canvas)
shutil.move(temp_name, output_path)
### Periodically Report Loss and Save Current Image ###
if (i+1)%REPORT_INTERVAL == 0:
print(' [st_helper] scale: ',scl,' iters: ' , i+1 , ell.item() ,ell)
#print((i+1),ell)
save_ind += 1
print(' scale : ',scl,' took: ', int(time.time()-scl_start), 'Seconds')
return stylized_im, ell