diff --git a/tests/test_conjugate_gradient.py b/tests/test_conjugate_gradient.py index 84c3bdd..1604253 100644 --- a/tests/test_conjugate_gradient.py +++ b/tests/test_conjugate_gradient.py @@ -20,9 +20,9 @@ def test_conjugate_gradient_simple(): # A = np.diag(np.arange(1, n + 1)) # x_true = np.random.rand(n) # b = np.dot(A, x_true) -# +# # x = conjugate_gradient(A, b) -# +# # assert np.allclose(x, x_true, rtol=1e-5) @@ -40,7 +40,7 @@ def test_conjugate_gradient_with_initial_guess(): # def test_conjugate_gradient_non_convergence(): # A = np.array([[1.0, 2.0], [2.0, 1.0]]) # Not positive definite # b = np.array([1.0, 1.0]) -# +# # with pytest.raises(ValueError): # conjugate_gradient(A, b, max_iter=10) diff --git a/tests/test_lmi.py b/tests/test_lmi.py index 9176d6c..c9debc6 100644 --- a/tests/test_lmi.py +++ b/tests/test_lmi.py @@ -24,8 +24,8 @@ def __init__(self, oracle): instance. :param oracle: The `oracle` parameter in the `__init__` method is a function that takes two - arguments `F` and `B` and returns some value. In this code snippet, the `oracle` function is being - used to create two instances `lmi1` and `lmi2` + arguments `F` and `B` and returns some value. In this code snippet, the `oracle` function is being + used to create two instances `lmi1` and `lmi2` """ self.c = np.array([1.0, -1.0, 1.0]) F1 = np.array( @@ -52,15 +52,15 @@ def assess_optim(self, xc: np.ndarray, gamma: float) -> Tuple[Cut, Optional[floa This function assesses the optimality of a solution based on given constraints and a target value. :param xc: The parameter `xc` is a NumPy array representing a point in a multidimensional space. It - is used as input to assess the optimality of a solution in a mathematical optimization context + is used as input to assess the optimality of a solution in a mathematical optimization context :type xc: np.ndarray :param gamma: Gamma is the best-so-far optimal value that is passed as an argument to the - `assess_optim` method. It is a float value used in the optimization process to determine the - optimality of a solution + `assess_optim` method. It is a float value used in the optimization process to determine the + optimality of a solution :type gamma: float :return: The `assess_optim` method returns a tuple containing a `Cut` object and an optional float - value. The `Cut` object represents a cut in the optimization problem, while the float value - represents the optimality measure. + value. The `Cut` object represents a cut in the optimization problem, while the float value + represents the optimality measure. """ for _ in range(3): self.idx = 0 if self.idx == 2 else self.idx + 1 # round robin @@ -84,13 +84,13 @@ def run_lmi(oracle, space): optimization using cutting plane method, and returns the number of iterations. :param oracle: The `oracle` parameter in the `run_lmi` function is expected to be a type that is - used as an argument for the `MyOracle` class. It seems like the `MyOracle` class is used to wrap the - `oracle` parameter for some specific functionality within the `run_l + used as an argument for the `MyOracle` class. It seems like the `MyOracle` class is used to wrap the + `oracle` parameter for some specific functionality within the `run_l :param Space: The `Space` parameter in the `run_lmi` function seems to be a class or function that - takes two arguments - a float value `10.0` and an array `xinit`. It likely initializes some kind of - space or environment based on these inputs + takes two arguments - a float value `10.0` and an array `xinit`. It likely initializes some kind of + space or environment based on these inputs :return: The function `run_lmi` returns the number of iterations (`num_iters`) after running the - cutting plane optimization algorithm. + cutting plane optimization algorithm. """ xinit = np.array([0.0, 0.0, 0.0]) # initial xinit ellip = space(10.0, xinit)