Backbone | Lr Schd | box mAP (minival) | #params | FLOPs | config | log | model |
---|---|---|---|---|---|---|---|
DB-ResNet50 | 1x | 40.8 | 69M | 284G | config | github | github |
Backbone | Lr Schd | box mAP (minival/test-dev) | #params | FLOPs | config | model |
---|---|---|---|---|---|---|
DB-Res2Net101-DCN | 20e | 53.7/- | 141M | 429G | config | github |
DB-Res2Net101-DCN | 20e + 1x (swa) | 54.8/55.3 | 141M | 429G | config (test only) | github |
Backbone | Lr Schd | box mAP (minival/test-dev) | #params | FLOPs | config | model |
---|---|---|---|---|---|---|
DB-Res2Net101-DCN | 20e | 54.1/- | 146M | 774G | config | github |
DB-Res2Net101-DCN | 20e + 1x (swa) | 55.3/55.6 | 146M | 774G | config (test only) | github |
Notes:
- For SWA training, please refer to SWA Object Detection
Backbone | Lr Schd | box mAP (minival) | mask mAP (minival) | #params | FLOPs | config | log | model |
---|---|---|---|---|---|---|---|---|
DB-Swin-T | 3x | 50.2 | 44.5 | 76M | 357G | config | github | github |
Backbone | Lr Schd | box mAP (minival) | mask mAP (minival) | #params | FLOPs | config | log | model |
---|---|---|---|---|---|---|---|---|
DB-Swin-T | 3x | 53.6 | 46.2 | 114M | 836G | config | github | github |
Backbone | Lr Schd | box mAP (minival/test-dev) | mask mAP (minival/test-dev) | #params | FLOPs | config | model |
---|---|---|---|---|---|---|---|
DB-Swin-S | 3x | 56.3/56.9 | 48.6/49.1 | 156M | 1016G | config | github |
Backbone | Lr Schd | box mAP (minival/test-dev) | mask mAP (minival/test-dev) | #params | FLOPs | config | model |
---|---|---|---|---|---|---|---|
DB-Swin-B | 20e | 57.9/- | 50.2/- | 231M | 1004G | config | github |
DB-Swin-B | 20e + 1x (swa) | 58.2/58.6 | 50.4/51.1 | 231M | 1004G | config (test only) | github |
Compared to regular HTC, our HTC uses 4conv1fc in bbox head.
Backbone | Lr Schd | box mAP (minival/test-dev) | mask mAP (minival/test-dev) | #params | FLOPs | config | model |
---|---|---|---|---|---|---|---|
DB-Swin-B | 20e | 58.4/58.7 | 50.7/51.1 | 235M | 1348G | config | github |
DB-Swin-L | 1x | 59.1/59.4 | 51.0/51.6 | 453M | 2162G | config | github |
DB-Swin-L (TTA) | 1x | 59.6/60.1 | 51.8/52.3 | 453M | - | config | github |
TTA denotes test time augmentation.
Notes:
- Pre-trained models of Swin Transformer can be downloaded from Swin Transformer for ImageNet Classification.