-
Notifications
You must be signed in to change notification settings - Fork 0
/
code.py
289 lines (240 loc) · 9.2 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import cPickle
import theano, numpy
from theano import tensor as T
import lasagne
#import gensim
print "Loading data ..."
f = "atis.pkl"
train_set, test_set, dicts = cPickle.load(open(f,'rb'))
def get_longest_sentence():
maior = 0
for n in train_set[0]:
if (maior < len(n)):
maior = len(n)
return maior
# nv :: size of our vocabulary
# de :: dimension of the embedding space
# cs :: context window size
nv, de, cs = 1000, 10, 15
batch_size = 19
num_epochs = 262
#262
num_units = 300
#number of features generated by the contextWindow method
num_axis = cs*10
num_classes = 127
max_length = get_longest_sentence()
embeddings = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \
(nv+1, de)).astype(theano.config.floatX)) # add one for PADDING at the end
idxs = T.imatrix()
x = embeddings[idxs].reshape((idxs.shape[0], de*cs))
#Function that creates the word embeddings
create_embeddings = theano.function(inputs=[idxs], outputs=x)
def word2vec(win, dim):
# win :: int corresponding to the size of the window
# dim :: dimensionality of the resulting points
sentences = [];
for n in train_set[0]:
exampleWI = n
sentences.append(map(lambda x: idx2word[x], exampleWI))
for n in test_set[0]:
exampleWI = n
sentences.append(map(lambda x: idx2word[x], exampleWI))
#model = gensim.models.Word2Vec(sentences, size=dim, window=win, min_count=0, workers=4)
out = []
for sentenceA in sentences:
sentenceContext = []
#for word in sentenceA:
#sentenceContext.append(model[word])
pad_size = max_length - len(sentenceA)
pad = numpy.zeros((pad_size,dim))
sentenceContext = numpy.concatenate([sentenceContext,pad])
out.append(sentenceContext)
return out
def contextwin(l, win):
# win :: int corresponding to the size of the window
# given a list of indexes composing a sentence
# l :: array containing the word indexes
# it will return a list of list of indexes corresponding
# to context windows surrounding each word in the sentence
assert (win % 2) == 1
assert win >= 1
l = list(l)
lpadded = win // 2 * [-1] + l + win // 2 * [-1]
out = [lpadded[i:(i + win)] for i in range(len(l))]
assert len(out) == len(l)
return out
idx2label = dict((k,v) for v,k in dicts['labels2idx'].iteritems())
idx2ent = dict((k,v) for v,k in dicts['tables2idx'].iteritems())
idx2word = dict((k,v) for v,k in dicts['words2idx'].iteritems())
def print_Example(index=0):
if ((index > len(train_set[0])) or (index < 0)):
print "Choose a number between 0 and", len(train_set[0])+1, "to print as example"
else:
#Word Indexes
exampleWI = train_set[0][index]
print "Words:", map(lambda x: idx2word[x], exampleWI)
print "Word Idx:", exampleWI
#Name Entities
exampleNE = train_set[1][index]
print "Name Ent:", map(lambda x: idx2ent[x], exampleNE)
print "Name Ent Idx:", train_set[1][index]
#Label Indexes (target)
exampleLI = train_set[2][index]
print "IOB:", map(lambda x: idx2label[x], exampleLI)
print "IOB Idx:", exampleLI
def one_hot_to_int(pred3d):
pred2d = []
for p_sentence in pred3d:
pred1d = []
for p_word in p_sentence:
best = 0
b_idx = 0
for idx_c, val in enumerate(p_word):
if (best < val):
b_idx = idx_c
best = val
pred1d.append(b_idx)
pred2d.append(pred1d)
return numpy.array(pred2d)
def f1_score(pred, groundtruth):
assert (pred.shape == groundtruth.shape)
retrieved = 0.0
relevant = 0.0
true_positive = 0.0
for idx_s, sentence in enumerate(groundtruth):
for idx, word in enumerate(sentence):
if (word == pred[idx_s,idx]):
retrieved += 1
if (word != 126):
relevant += 1
if (word == pred[idx_s,idx]) and (word != 126):
true_positive += 1
recall = true_positive/relevant
if (retrieved != 0):
precision = true_positive/retrieved
else:
precision = 0
if ((precision+recall) != 0.0):
return 2*((precision*recall)/(precision+recall))
else:
return "NOT VALID"
def build_word2vec_dataset():
print "Creating Context Windows..."
mask_train = numpy.zeros((len(train_set[0]), get_longest_sentence()))
count = 0
for tr in train_set[0]:
pad_size = max_length - len(tr)
pad = numpy.zeros((pad_size))
padded_train = numpy.concatenate([tr, pad])
padded_train_out = numpy.concatenate([train_set[2][count], pad])
train_set[2][count] = padded_train_out
mask_train[count, :len(tr)] = 1
count += 1
mask_test = numpy.zeros((len(test_set[0]), get_longest_sentence()))
count = 0
for te in test_set[0]:
pad_size = max_length - len(te)
pad = numpy.zeros((pad_size))
padded_test = numpy.concatenate([te, pad])
padded_test_out = numpy.concatenate([test_set[2][count], pad])
test_set[2][count] = padded_test_out
mask_test[count, :len(te)] = 1
count += 1
#generating features from word2vec
print "Generating features using word2vec..."
w2v_data = word2vec(cs,cs*10)
train_in = numpy.array(w2v_data[:len(train_set[0])])
test_in = numpy.array(w2v_data[len(train_set[0]):])
train_out = numpy.array(train_set[2])
test_out = numpy.array(test_set[2])
return train_in, test_in, train_out.astype('int32'), test_out.astype('int32'), mask_train.astype('int32'), mask_test.astype('int32')
def build_dataset():
print "Creating Context Windows ..."
#Creating Word Indexes Context Windows for the Training set
train_contextWin = []
mask_train = numpy.zeros((len(train_set[0]), get_longest_sentence()))
count = 0
for tr in train_set[0]:
pad_size = max_length - len(tr)
pad = numpy.zeros((pad_size))
padded_train = numpy.concatenate([tr, pad])
padded_train_out = numpy.concatenate([train_set[2][count], pad])
train_set[2][count] = padded_train_out
train_contextWin.append(contextwin(padded_train, cs))
mask_train[count, :len(tr)] = 1
count += 1
#Creating Word Indexes Context Windows for the Test set
test_contextWin = []
mask_test = numpy.zeros((len(test_set[0]), get_longest_sentence()))
count = 0
for te in test_set[0]:
pad_size = max_length - len(te)
pad = numpy.zeros((pad_size))
padded_test = numpy.concatenate([te, pad])
padded_test_out = numpy.concatenate([test_set[2][count], pad])
test_set[2][count] = padded_test_out
test_contextWin.append(contextwin(padded_test, cs))
mask_test[count, :len(te)] = 1
count += 1
#Creating the Word Embeddings from Word Indexes Context Windows for the Training set
print "Creating Word Embeddings ..."
train_Emb = []
for i in train_contextWin:
train_Emb.append(create_embeddings(i))
#Creating the Word Embeddings from Word Indexes Context Windows for the Test set
test_Emb = []
for i in test_contextWin:
test_Emb.append(create_embeddings(i))
train_in = numpy.array(train_Emb)
test_in = numpy.array(test_Emb)
train_out = numpy.array(train_set[2])
test_out = numpy.array(test_set[2])
return train_in, test_in, train_out.astype('int32'), test_out.astype('int32'), mask_train.astype('int32'), mask_test.astype('int32')
#print_Example(120)
input_var = T.tensor3('input_var')
mask_var = T.matrix('mask_var')
target_var = T.imatrix('target_var')
#################
## BUILD MODEL ##
#################
l_inp = lasagne.layers.InputLayer((batch_size, max_length, num_axis), input_var=input_var)
l_mask = lasagne.layers.InputLayer((batch_size, max_length), mask_var)
l_lstm = lasagne.layers.LSTMLayer(l_inp, num_units=num_units,
ingate=lasagne.layers.Gate(),
forgetgate=lasagne.layers.Gate(),
cell=lasagne.layers.Gate(
W_cell=None, nonlinearity=lasagne.nonlinearities.tanh),
outgate=lasagne.layers.Gate(),
nonlinearity=lasagne.nonlinearities.tanh,
cell_init=lasagne.init.Constant(0.),
hid_init=lasagne.init.Constant(0.), backwards=False, learn_init=False,
peepholes=True, gradient_steps=-1, grad_clipping=0, unroll_scan=False,
precompute_input=True, mask_input=l_mask)
l_shp = lasagne.layers.ReshapeLayer(l_lstm, (-1, num_units))
l_den = lasagne.layers.DenseLayer(l_shp, 127, nonlinearity=lasagne.nonlinearities.softmax)
l_out = lasagne.layers.ReshapeLayer(l_den, (-1, max_length, 127))
prediction = lasagne.layers.get_output(l_out)
loss = lasagne.objectives.categorical_crossentropy(prediction.reshape((-1,127)), target_var.flatten())
loss = lasagne.objectives.aggregate(loss, mask_var.flatten())
params = lasagne.layers.get_all_params(l_out, trainable=True)
print "Computing updates ..."
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.01, momentum=0.9)
test_prediction = lasagne.layers.get_output(l_out, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction.reshape((-1,127)), target_var.flatten())
test_loss = lasagne.objectives.aggregate(loss, mask_var.flatten())
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),dtype=theano.config.floatX)
print "Compiling functions ..."
train_fn = theano.function([input_var, target_var, mask_var], outputs=[loss, prediction], updates=updates)
train_in, test_in, train_out, test_out, mask_train, mask_test = build_dataset()
idx = 0
for epoch in range(num_epochs):
print "Training epoch", epoch+1
tr_in = train_in[idx:idx+batch_size]
tr_out = train_out[idx:idx+batch_size]
tr_mask = mask_train[idx:idx+batch_size]
train_loss, pred3d = train_fn(tr_in, tr_out, tr_mask)
print "Train Loss:", train_loss
pred2d = one_hot_to_int(pred3d)
print "F1 Score:", f1_score(pred2d,train_out[idx:idx+batch_size])
idx = idx + batch_size