forked from rubel75/VASPtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessOUTCAR.py
224 lines (201 loc) · 8.57 KB
/
processOUTCAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Process OUTCAR file generated by VASP
Usage: python ~/VASPtools/processOUTCAR.py -o OUTCAR-1 -b 10
optional arguments:
-h, --help show this help message and exit
-o O name of the VASP OUTCAR file
-b B band range for plotting above and below the Fermi energy
@author: Oleg Rubel
"""
import numpy as np
import os
import sys
import csv
import argparse # parse line arguments
def user_input():
"""Editable section where users define their input"""
showplots = True
return bandrange, showplots
# end user_input
def read_OUTCAR(fnameOUTCAR):
"""Read OUTCAR file and determine
- the Fermi energy (eV)"""
WorkingDir = os.getcwd()
print (f'Working directory = {WorkingDir}')
os.chdir(WorkingDir)
i = 0 # line counter
readene = False # flag to enable reading of G vector
ik = 0 # counter for k points read
with open(fnameOUTCAR) as file:
print (f'Reading {fnameOUTCAR} file ...')
for line in file:
i += 1
if ('band energies' in line): # energy eigenvalues section
readene = True
iE = 0 # G vector lines counter
G = np.zeros((3,3)) # allocate
elif readene: # Read eigenvalues
# line looks like this
# 10 -22.7712 1.00000
lsplit = line.rstrip().split()
if not(len(lsplit) == 3):
raise ValueError(f'The line suppose to split into 3 values, but it does not. Here is the line: {line}')
# Skip first 3 values. Those are real space lattice parameters
# Units of G are (1/Ang)
if ((ik >= nkpts) and lspin and not(lsorbit)): # filling up spin DN
eneEigvalsDN[ik-nkpts,iE] = float(lsplit[1])
else: # spin UP or SOC
eneEigvals[ik,iE] = float(lsplit[1])
if (iE == nbands-1): # all eigenvalues read?
readene = False # stop reading G matrix
ik += 1 # next k point
else:
iE += 1 # next eiganvalue
elif ('NBANDS=' in line): # get number of bands and k-points
# working with line
# k-points NKPTS = 4 k-points in BZ NKDIM = 4 number of bands NBANDS= 3016
lsplit = line.rstrip().split('NKPTS =')
lsplit = lsplit[1].rstrip().split()
nkpts = int(lsplit[0])
lsplit = line.rstrip().split('NBANDS=')
lsplit = lsplit[1].rstrip().split()
nbands = int(lsplit[0])
elif ('ISPIN =' in line): # spin polarized?
lsplit = line.rstrip().split('ISPIN =')
lsplit = lsplit[1].rstrip().split()
if lsplit[0] == '1':
lspin = False
else:
lspin = True
elif ('LSORBIT =' in line): # SOC?
lsplit = line.rstrip().split('LSORBIT =')
lsplit = lsplit[1].rstrip().split()
if lsplit[0] == 'T':
lsorbit = True
else:
lsorbit = False
elif ('E-fermi :' in line): # Fermi energy (eV) and allocate E(k,n)
lsplit = line.rstrip().split()
efermi = float(lsplit[2])
eneEigvals = np.zeros((nkpts,nbands)) # E(k,n)
eneEigvalsDN = np.zeros((nkpts,nbands))
ik = 0 # reset counter for k points since new set of eiganvalues
# will follow E_Fermi in the OUTCAR file
print(f'Number of bands from {fnameOUTCAR}: {nbands}')
print(f'Number of k-points from {fnameOUTCAR}: {nkpts}')
print(f'Spin-polarized calculation from {fnameOUTCAR}: {lspin}')
print(f'SOC from {fnameOUTCAR}: {lsorbit}')
print(f'Fermi energy from {fnameOUTCAR}: {efermi} (eV)')
return nkpts, nbands, lspin, lsorbit, efermi, eneEigvals, eneEigvalsDN
# end read_OUTCAR
def coordTransform(V,G):
"""Transform vector V(:,3) in G(3,3) coord. system -> W(:,3) in Cartesian
coordinates"""
W = np.zeros(np.shape(V))
for i in range(np.shape(V)[0]):
W[i,:] = G[0,:]*V[i,0] + G[1,:]*V[i,1] + G[2,:]*V[i,2]
return W
# end coordTransform
# MAIN
if __name__=="__main__":
# Set up parser for line arguments
parser = argparse.ArgumentParser()
parser.add_argument("-o",\
help="name of the VASP OUTCAR file",\
type=str,\
required=False,\
default='OUTCAR')
parser.add_argument("-b",\
help="band range for plotting above and below the Fermi energy",\
type=int,\
required=False,\
default=5)
args = parser.parse_args()
# Set user parameters
fnameOUTCAR = args.o
print(f'OUTCAR file name: {fnameOUTCAR}')
bandrange = args.b
showplots = user_input()
# Print input
#print("User input:")
#print(f'Energy range from {erange[0]} to {erange[1]} (eV) relative to the Fermi energy')
# read OUTCAR
nkpts, nbands, lspin, lsorbit, efermi, eneEigvals,eneEigvalsDN \
= read_OUTCAR(fnameOUTCAR)
# find band that crosses the Fermi energy
for ik in range(nkpts):
exitloop = False
for ib in range(nbands):
if (eneEigvals[ik,ib] >= efermi):
ibandFermi = ib # keep in mind that this is a band index
# the actual band number is (i + 1)
ikptFermi = ik
exitloop = True
break
if exitloop:
break
print(f'Band crossing the Fermi energy: {ibandFermi+1} at k-point {ikptFermi+1}')
# write csv file
data = eneEigvals[:,ibandFermi-bandrange:ibandFermi+bandrange]
bands = np.arange(ibandFermi-bandrange,ibandFermi+bandrange,1) + 1
if (lspin and not(lsorbit)): # spin dn component only
dataDN = eneEigvalsDN[:,ibandFermi-bandrange:ibandFermi+bandrange]
dataDN = np.concatenate(([bands],dataDN),axis=0)
dataDN = np.transpose(dataDN)
data = np.concatenate(([bands],data),axis=0)
data = np.transpose(data)
with open("bands.csv", "wt") as fp:
writer = csv.writer(fp, delimiter=",")
# write header
writer.writerow(["# band", "energy k1 (eV)", "energy k2 (eV)" ,"..."])
if (lspin and not(lsorbit)): # spin dn component only
writer.writerow(["# up"])
# write data
writer.writerows(data)
if (lspin and not(lsorbit)): # spin dn component only
writer.writerow(["# dn"])
writer.writerows(dataDN)
writer.writerow(["# Fermi energy (eV)", efermi])
writer.writerow(["# Band crossing the Fermi energy", ibandFermi+1])
# plot results
import matplotlib.pyplot as plt
if (not(lspin) or lsorbit): # one spin component component only or spinor
# plot simple band structure
f1 = plt.figure()
kindex = np.arange(1,nkpts+1)
for ie in range(ibandFermi-bandrange,ibandFermi+bandrange):
plt.plot(kindex, eneEigvals[:,ie], label=str(ie+1), marker='.')
plt.legend() # show legend
ax = plt.gca()
ax.set_xlim([1, nkpts])
plt.grid(visible=True, which='major', axis='both')
plt.axhline(y=efermi, color='black', linestyle='--') # line at E_Fermi
plt.xlabel("k-point index")
plt.ylabel("Energy (eV)")
if showplots:
plt.show()
# save figure
f1.savefig("band_struct.pdf", bbox_inches='tight')
else:
# plot both spins
f2, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
kindex = np.arange(1,nkpts+1)
for ie in range(ibandFermi-bandrange,ibandFermi+bandrange):
ax1.plot(kindex, eneEigvals[:,ie], label=str(ie+1), marker='.')
ax2.plot(kindex, eneEigvalsDN[:,ie], label=str(ie+1), marker='.')
ax1.legend() # show legend
ax1.set_xlim([1, nkpts])
ax2.set_xlim([1, nkpts])
ax1.grid(visible=True, which='major', axis='both')
ax2.grid(visible=True, which='major', axis='both')
ax1.axhline(y=efermi, color='black', linestyle='--') # line at E_Fermi
ax2.axhline(y=efermi, color='black', linestyle='--') # line at E_Fermi
ax1.set(xlabel="k-point index", ylabel="Energy (eV)", title="spin UP")
ax2.set(xlabel="k-point index", title="spin DN")
if showplots:
plt.show()
# save figure
f2.savefig("band_struct.pdf", bbox_inches='tight')
print('Figure stored in band_struct.pdf file')