-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathICSDClient.py
388 lines (290 loc) · 16.1 KB
/
ICSDClient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import re
import numpy as np
import datetime
import pandas as pd
import requests
from bs4 import BeautifulSoup
def main():
client = ICSDClient("YOUR_USERNAME", "YOUR_PASSWORD")
search_dict = {"collectioncode": "1-5000"}
search = client.advanced_search(search_dict,
property_list=["CollectionCode", "StructuredFormula","CalculatedDensity","MeasuredDensity","CellVolume"])
data=[]
for i,item in enumerate(search):
data.append([int(item[0]),int(item[1][0]),item[1][1],item[1][2],item[1][3],item[1][4]])
pd_data=pd.DataFrame(data,columns=['DB_id','Col_code','name','cal_density', 'meas_density','cellvolume'])
pd_data.to_csv('densities.csv',index=True)
# search_dict = {"collectioncode": "1-100"}
# search = client.advanced_search(search_dict)
# cifs = client.fetch_cifs(search)
# x = client.search("Li O")
# cifs = client.fetch_cifs(search)
# client.fetch_all_cifs()
# cif = client.fetch_cif(1)
# client.writeout(cif)
client.logout()
class ICSDClient():
def __init__(self, login_id=None, password=None, windows_client=False, timeout=15):
self.auth_token = None
self.session_history = []
self.windows_client = windows_client
self.search_dict = self.load_search_dict()
self.timeout = timeout
if login_id is not None:
self.login_id = login_id
self.password = password
self.authorize()
def __del__(self):
self.logout()
def authorize(self, verbose=True):
data = {"loginid": self.login_id,
"password": self.password}
headers = {
'accept': 'text/plain',
'Content-Type': 'application/x-www-form-urlencoded',
}
response = requests.post('https://icsd.fiz-karlsruhe.de/ws/auth/login',
headers=headers,
data=data)
if response.status_code == 200:
self.auth_token = response.headers['ICSD-Auth-Token']
if verbose: print(f"Authentication succeeded. Your Auth Token for this session is {self.auth_token} which will expire in one hour. Please remember to call client.logout() when you have finished.")
else:
if verbose: print(response.content)
self.session_history.append(response)
return response
def logout(self, verbose=True):
headers = {
'accept': 'text/plain',
'ICSD-Auth-Token': self.auth_token,
}
response = requests.get('https://icsd.fiz-karlsruhe.de/ws/auth/logout', headers=headers)
if verbose: print(response.content)
self.session_history.append(response)
return response
def writeout(self, cifs, folder="./cifs/"):
if not os.path.exists(folder):
os.makedirs(folder)
if not isinstance(cifs, list):
if cifs is None:
print("Requires a valid cif string, this string is None. Ensure download was successful")
return
cifs = [cifs]
for cif in cifs:
icsd_code = re.search(r"_database_code_ICSD ([0-9]+)", cif).group(1)
filename = f"icsd_{int(icsd_code):06}.cif"
with open(os.path.join(folder, filename), "w") as f:
for line in cif.splitlines():
f.write(line + "\n")
def search(self, searchTerm, content_type="EXPERIMENTAL_INORGANIC"):
'''
Available content EXPERIMENTAL_INORGANIC, EXPERIMENTAL_METALORGANIC, THERORETICAL_STRUCTURES
'''
if self.auth_token is None:
print("You are not authenticated, call client.authorize() first")
return
if content_type is None:
params = (
('query', searchTerm),
('content type', content_type),
)
else:
params = (
('query', searchTerm),
('content type', content_type),
)
headers = {
'accept': 'application/xml',
'ICSD-Auth-Token': self.auth_token,
}
response = requests.get('https://icsd.fiz-karlsruhe.de/ws/search/simple',
headers=headers,
params=params,
timeout=self.timeout)
self.session_history.append({searchTerm: response})
search_results = [x for x in str(response.content).split("idnums")[1].split(" ")[1:-2]]
compositions = self.fetch_data(search_results)
return list(zip(search_results, compositions))
def advanced_search(self,
search_dict,
search_type="or",
property_list=["CollectionCode", "StructuredFormula"],
content_type="EXPERIMENTAL_INORGANIC"):
for k, v in search_dict.items():
if k not in self.search_dict:
return f"Invalid search term {k} in search dict. Call client.search_dict.keys() to see available search terms"
elif v is None:
search_dict.pop(k)
search_string = f" {search_type} ".join([f"{str(k)} : {str(v)}" for k, v in search_dict.items()])
params = (
('query', search_string),
('content type', content_type),
)
headers = {
'accept': 'application/xml',
'ICSD-Auth-Token': self.auth_token,
}
response = requests.get('https://icsd.fiz-karlsruhe.de/ws/search/expert',
headers=headers,
params=params,
timeout=self.timeout)
# TODO add exception handling for timeouts
self.session_history.append({search_string: response})
soup = BeautifulSoup(response.content, "html.parser")
if "<idnums></idnums>" in str(soup):
return []
search_results = soup.idnums.contents[0].split(" ")
# search_results = [x for x in str(response.content).split("idnums")[1].split(" ")[1:-2]]
properties = self.fetch_data(search_results, property_list=property_list)
return list(zip(search_results, properties))
def fetch_data(self, ids, property_list=["CollectionCode", "StructuredFormula"]):
"""
Available properties: CollectionCode, HMS, StructuredFormula, StructureType,
Title, Authors, Reference, CellParameter, ReducedCellParameter, StandardizedCellParameter,
CellVolume, FormulaUnitsPerCell, FormulaWeight, Temperature, Pressure, RValue,
SumFormula, ANXFormula, ABFormula, ChemicalName, MineralName, MineralGroup,
CalculatedDensity, MeasuredDensity, PearsonSymbol, WyckoffSequence, Journal,
Volume, PublicationYear, Page, Quality
"""
if len(ids) > 500:
chunked_ids = np.array_split(ids, np.ceil(len(ids)/500))
return_responses = []
for i, chunk in enumerate(chunked_ids):
return_responses.append(self.fetch_data(chunk,
property_list=property_list))
if i % 2 == 0:
self.logout(verbose=False)
self.authorize(verbose=False)
flattened = [item for sublist in return_responses for item in sublist]
return flattened
headers = {
'accept': 'application/csv',
'ICSD-Auth-Token': self.auth_token,
}
params = (
('idnum', ids),
('windowsclient', self.windows_client),
('listSelection', property_list),
)
response = requests.get('https://icsd.fiz-karlsruhe.de/ws/csv', headers=headers, params=params)
data = str(response.content).split("\\t\\n")[1:-1]
# If there's only a single response
if len(data) == 0 and len(ids) != 0:
data = str(response.content).split("\\t\\r\\n")[1:-1]
if len(property_list) > 1:
data = [x.split("\\t") for x in data]
self.session_history.append({str(ids): data})
return data
def fetch_cif(self, id):
if self.auth_token is None:
print("You are not authenticated, call client.authorize() first")
return
headers = {
'accept': 'application/cif',
'ICSD-Auth-Token': self.auth_token,
}
params = (
('celltype', 'experimental'),
('windowsclient', self.windows_client),
)
response = requests.get(f'https://icsd.fiz-karlsruhe.de/ws/cif/{id}', headers=headers, params=params)
self.session_history.append({id: response})
return response.content.decode("UTF-8").strip()
def fetch_cifs(self, ids):
if self.auth_token is None:
print("You are not authenticated, call client.authorize() first")
return
if len(ids) == 0:
return []
if isinstance(ids[0], tuple):
ids = [x[0] for x in ids]
if len(ids) > 500:
chunked_ids = np.array_split(ids, np.ceil(len(ids)/500))
return_responses = []
for i, chunk in enumerate(chunked_ids):
if i % 2 == 0:
self.logout(verbose=False)
self.authorize(verbose=False)
return_responses.append(self.fetch_cifs(chunk))
flattened = [item for sublist in return_responses for item in sublist]
return_responses = ''.join(flattened)
cifs = re.split("\(C\) 2021 by FIZ Karlsruhe", return_responses)[1:]
cifs = [f'(C) {datetime.date.today().strftime("%Y")} by FIZ Karlsruhe' + x for x in cifs]
cifs = [x.encode("UTF-8") for x in cifs]
return cifs
headers = {
'accept': 'application/cif',
'ICSD-Auth-Token': self.auth_token,
}
params = (
('idnum', ids),
('celltype', 'experimental'),
('windowsclient', self.windows_client),
('filetype', 'cif'),
)
response = requests.get('https://icsd.fiz-karlsruhe.de/ws/cif/multiple', headers=headers, params=params)
cifs = re.split("\\(C\\) [0-9]{4} by FIZ Karlsruhe", response.content.decode("UTF-8"))[1:]
cifs = [f"(C) 2022 by FIZ Karlsruhe" + x for x in cifs]
return cifs
def fetch_all_cifs(self, cif_path="./cifs/", content_type="EXPERIMENTAL_INORGANIC"):
for x in range(0, 1000000, 500):
self.logout(verbose=False)
self.authorize(verbose=False)
print(f"{x}-{x+499}")
search_res = self.advanced_search({"collectioncode": f"{x}-{x+499}"}, content_type=content_type)
cifs = self.fetch_cifs(search_res)
try:
x = cifs[-1]
except:
print("\nNo CIFs returned in this range, last response:\n")
print(self.session_history[-1])
self.writeout(cifs, cif_path)
def load_search_dict(self):
search_dict = {"AUTHORS" : None, # BIBLIOGRAPHY : Authors name for the main (first) reference Text
"ARTICLE" : None, # BIBLIOGRAPHY : Title of article for the main (first) reference Text
"PUBLICATIONYEAR" : None, # BIBLIOGRAPHY : Year of publication of an article in the reference Numerical, integer
"PAGEFIRST" : None, # BIBLIOGRAPHY : First page number of an article in the referenceNumerical, integer
"JOURNAL" : None, # BIBLIOGRAPHY : Title of journal for the reference Text
"VOLUME" : None, # BIBLIOGRAPHY : Volume of the journal in the reference Numerical, integer
"ABSTRACT" : None, # BIBLIOGRAPHY : Abstract for the main (first) reference Text
"KEYWORDS" : None, # BIBLIOGRAPHY : Keywords for the main (first) reference Text
"CELLVOLUME" : None, # CELL SEARCH : Cell volumeNumerical, floating point
"CALCDENSITY" : None, # CELL SEARCH : Calculated density Numerical, floating poit
"CELLPARAMETERS" : None, # CELL SEARCH : Cell lenght a,b,c and angles alpha, beta, gamma separated by whitespace, i.e.: a b c alpha beta gamma, * if any value Numerical, floating point
"SEARCH" : None, # CELLDATACELL SEARCH : Restriction of cellparameters.experimental, reduced, standardized
"STRUCTUREDFORMULA" : None, # A CHEMISTRY SEARCH : Search for typical chemical groups Text
"CHEMICALNAME" : None, # CHEMISTRY SEARCH : Search for (parts of) the chemical name Text
"MINERALNAME" : None, # CHEMISTRY SEARCH : Search for the mineral name Text
"MINERALGROUP" : None, # CHEMISTRY SEARCH : Search for the mineral group Text
"ZVALUECHEMISTRY" : None, # SEARCH :Number of formula units per unit cell Numerical, integer
"ANXFORMULA" : None, # CHEMISTRY SEARCH : Search for the ANX formula Text
"ABFORMULA" : None, # CHEMISTRY SEARCH : Search for the AB formula Text
"FORMULAWEIGHT" : None, # CHEMISTRY SEARCH : Search for the formula weight Numerical, floating point
"NUMBEROFELEMENTS" : None, # CHEMISTRY SEARCH : Search for number of elementsinteger
"COMPOSITION" : None, # CHEMISTRY SEARCH : Search for the chemical composition (including stochiometric coefficients and/or oxidation numbers: EL:Co.(min):Co.(max):Ox.(min):Ox.(max)with El=element, Co=coefficient, Ox=oxidation number) Text
"COLLECTIONCODE" : None, # DB INFO : ICSD collection codeNumerical, integer
"PDFNUMBER" : None, # DB INFO : PDF number as assigned by ICDD Text
"RELEASE" : None, # DB INFO : Release tagNumerical, integer, special format
"RECORDINGDATE" : None, # DB INFO : Recording date of an ICSD entry Numerical, integer, special format
"MODIFICATIONDATE" : None, # DB INFO : Modification date of an ICSD entry Numerical, integer, special format
"COMMENT" : None, # EXPERIMENTAL SEARCH : Search for a comment Text
"RVALUE" : None, # EXPERIMENTAL SEARCH : R-value of the refinement (0.00 ... 1.00) Numerical, floating point
"TEMPERATURE" : None, # EXPERIMENTAL SEARCH : Temperature of the measurement Numerical, floating point
"PRESSURE" : None, # EXPERIMENTAL SEARCH : Pressure during the measurement Numerical, floating point
"SAMPLETYPE": None, # EXPERIMENTAL SEARCH : Search for the sample type: powder, singlecrystal
"RADIATIONTYPE": None, # EXPERIMENTAL SEARCH : Search for the radiation type: xray, electrons, neutrons, synchotron
"STRUCTURETYPE" : None, # STRUCTURE TYPE : Search for predefined structure types directly Select one
"SPACEGROUPSYMBOL" : None, # SYMMETRY : Search for the space group symbol Text
"SPACEGROUPNUMBER" : None, # SYMMETRY : Search for the space group number Numerical, integer
"BRAVAISLATTICE" : None, # SYMMETRY : Select One: Primitive, a-centered, b-centered, c-centered, Body-centered, Rhombohedral, Face-centered Select one
"CRYSTALSYSTEM" : None, # SYMMETRY : Crystal system Select one
"CRYSTALCLASS" : None, # SYMMETRY : Search for the crystal class Text
"LAUECLASS" : None, # SYMMETRY : Search for predefined Laueclass: -1, -3, -3m, 2/m, 4/m, 4/mmm ,6/m 6/mmm ,m-3 ,m-3m ,mmm Select one
"WYCKOFFSEQUENCE" : None, # SYMMETRY : Search for the Wyckoff sequence Text
"PEARSONSYMBOL" : None, # SYMMETRY : Search for the Pearson symbol Text
"INVERSIONCENTER" : None, # SYMMETRY : Should inversion center be included? TRUE or FALSE
"POLARAXIS" : None} # SYMMETRY : Should polar axis be included TRUE or FALSE
return {k.lower(): v for k, v in search_dict.items()}
if __name__ == "__main__":
main()