-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdividend2sheet.py
330 lines (297 loc) · 13.7 KB
/
dividend2sheet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gspread
from gspread_dataframe import set_with_dataframe
from google.oauth2.service_account import Credentials
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from time import sleep
import yfinance as yf
from yahoofinancials import YahooFinancials
import numpy as np
from finvizfinance.quote import finvizfinance
from yahoofinancials import YahooFinancials
import yahoo_fin.stock_info as si
import warnings
from datetime import datetime, timedelta
import pandas as pd
warnings.filterwarnings("ignore")
# what to read to do this..
# https://medium.com/@jb.ranchana/write-and-append-dataframes-to-google-sheets-in-python-f62479460cf0
# https://practicaldatascience.co.uk/data-science/how-to-read-google-sheets-data-in-pandas-with-gspread
# https://docs.gspread.org/en/latest/user-guide.html
def getGoogleCreds(workbook):
#setting up variables..
scopes = ['https://www.googleapis.com/auth/spreadsheets','https://www.googleapis.com/auth/drive']
# this is the Dividend workbook
#get credentials / log in
credentials = Credentials.from_service_account_file('/Users/laurencegold/dividend/divcred.json', scopes=scopes)
gc = gspread.authorize(credentials)
gauth = GoogleAuth()
drive = GoogleDrive(gauth)
# open a google sheet
gs = gc.open_by_key(workbook)
return gs
def getCurrentGoogleSheetData(data_sheet):
df1 = pd.DataFrame(data_sheet.get_all_records())
# drop the Index column as this creates its own index..
df1 = df1.drop(columns=['Index'])
print(df1.head())
return df1
def updateLastUpdate(info_sheet):
print('updated infosheet')
now = datetime.now()
info_sheet.update('B1', now.strftime("%b %d, %Y %I:%M %p"))
def updateIndexB1(data_sheet):
print('updating datasheet')
data_sheet.update('A1', 'Index')
def turnDFinfoStockList(df1):
words = df1.Ticker.values.tolist()
print(words)
return words
def getWords(iFile):
print('Getting Tickers', end='\r')
words = []
success = True
try:
with open(iFile) as k:
for line in k:
words.append(line.strip())
except Exception as e:
print('Issue with getting file')
quit()
return words
def getFinViz(word,df,f_fields,f_dict,debug):
print('fin viz for',word, end='\r')
try:
#using the finviz site first get the fundamentals
stock = finvizfinance(word)
fund = stock.ticker_fundament()
#loop thru the fields and check add them to the data frame (yeah its wordy but clean)
for f_field in f_fields:
if debug:
print(f_field, " - ", f_dict[f_field], '--' ,str(fund[f_field]))
df.loc[df['Ticker'] == word, f_dict[f_field]] = fund[f_field]
except Exception as e:
print(word, " finviz complete error ", f_field, " - ", e)
finally:
return df
def getYahoofin(word, df, y_fields, y_dict, i, debug):
print('yahoo fin for ',word, end='\r')
try:
#now use Yfinance to fill in missing if possible
#get yfinance data
y_data = yf.Ticker(word)
y_info = y_data.info
#loop thru yfinance fields - and in this case check if null before overwriting
for y_field in y_fields:
if debug:
print(y_field, " - ", str(y_info[y_field]))
if pd.isnull(df.at[i,y_dict[y_field]]):
df.loc[df['Ticker'] == word, y_dict[y_field]] = y_info[y_field]
#for Stochastic Oscialltor calculatoin
#get Date - go back 30 days as need 14 days of data
days30 = datetime.now() - timedelta(days=30)
isPast = days30.date()
isNow = datetime.now().date()
#use Yfinance to get history
df1 = y_data.history(start=isPast, end=isNow, actions=False)
# #add a manual index from 1 to len of data frame
df1['index_ct'] = range(1, len(df1)+1)
#now need to subtract leaving 14 left
toSub = df1['index_ct'].max() - 13
df3 = df1[df1['index_ct'] >= toSub]
#df2 now has the data needed to calc
#find the max of the Highs, and min of the lows along with current price for the calcuation
L14 = df3['Low'].min()
H14 = df3['High'].max()
c_price = y_info['regularMarketPrice']
#now the Stochastic Calc
k = ((c_price - L14)/(H14 - L14))*100
df.loc[df['Ticker']== word, 'Stochastic'] = k
except Exception as e:
print(word,'yfiance has error calling',e )
finally:
return df
def getSi(word, df, yf_fields, yf_dict, i, debug):
print('si call for ',word, end='\r')
try:
#lastly there is another finance yahoo library - as i think P/E was missing from the above
#not going to over comment it does the same as above
quote = si.get_quote_table(word)
for yf_field in yf_fields:
if debug:
print(yf_field, str(quote[yf_field]))
if pd.isnull(df.at[i,yf_dict[yf_field]]):
df.loc[df['Ticker'] == word, yf_dict[yf_field]] = quote[yf_field]
except Exception as e:
print(word, ' - Yz finance issue:',e)
print(yf_field, ' - ')
finally:
return df
def getDivVPrice(word, df_a, df_index):
print('Compare dividends to price changes call for ',word, end='\r')
try:
#Things need to calculate
#Average price starting - Average Price 5 days after - Average Difference between the 2
#Count of items that are pos Negative
#Starting price and Ending Price for the whole thing
start_price = 0
end_price = 0
close_pr = 0 #2nd closing price?
#ic = 0
#Count of Pos Neg
iPos = 0
iNeg = 0
#To Get Averages we need totals at the ticker level
#avg_start_price / avg_close Price, and avg dif (totals and average)
avg_start_pr_tot = 0
avg_start_pr = 0
avg_close_pr_tot = 0
avg_close_pr = 0
avg_dif_tot = 0
avg_dif = 0
#not sure what Avg LG is or if needed
#avg_lg = 0
#this is a counter
i_ct = 0
price_dif = 0
#two counters of dividends (one value one number)
tot_div = 0
num_divs = 0
#Yfin get stuff
aapl = yf.Ticker(word)
df2 = aapl.history(start="2017-01-01", end="2022-10-22", actions=False)
df1 = aapl.actions
if len(df2) > 2 or len(df1) > 2:
#add a column with count
df2['index_ct'] = range(1, len(df2)+ 1)
df1['index_ct'] = range(1, len(df1)+ 1)
#get start and end prices
start_price = df2.loc[df2['index_ct']==1,'Close'].iloc[0]
end_price = aapl.info['regularMarketPrice']
#create a new column and put date/time as the new colunmn
df2 = df2.assign(C="")
for ind in df2.index:
df2.loc[ind]['C'] = ind
df2.at[ind, 'C']= ind
#for each of the actions (dividends) need to find the starting price
#the next 5 prices (average)
#the difference between them
for ind in df1.index:
#zero out the avg close, the total close, the price dif, the iprice counter, dummy and last close
avg_close = 0
tot_close = 0
i_price = 0
dummy = 0
#last_close = 0
num_divs = num_divs + 1 #this is the number of divs for this
#this is the price that we are starting with (closing price on div pay day)
close_pr = df2.loc[df2['C']==ind,'Close'].iloc[0]
#for each of the div add the total starting prices to _total
avg_start_pr_tot = avg_start_pr_tot + close_pr
#find the location to start at
i_ct = df2.loc[df2['C']==ind,'index_ct'].iloc[0]
#add the total dividends
tot_div = tot_div + df1.at[ind,'Dividends']
#for each of the dividends go thru the next 5 days and find to total
#if no data then error out but no PRINTING errors..
#only count what you do
for i in range(1,6):
#tot_close = tot_close + df.loc[df['index_ct']==(i + i_ct),'Close'].iloc[0]
#print(word, " ",tot_close)
try:
tot_close = tot_close + df2.loc[df2['index_ct']==(i + i_ct),'Close'].iloc[0]
i_price = i_price + 1
except Exception as e:
#print(word, "- in range:",e)
#this dummy is for no reason at all :D
dummy = dummy + 1
if i_price > 0:
#the total close should be around 5 different dates - so get average based on time you did
avg_close = tot_close / i_price
# price dif is also at word level
price_dif = price_dif + (close_pr - avg_close)
avg_dif_tot = avg_dif_tot + price_dif
#avg_price_dif = price_dif / num_divs
avg_close_pr_tot = avg_close_pr_tot + avg_close
if avg_close >= close_pr:
iPos = iPos + 1
else:
iNeg = iNeg + 1
if num_divs > 0:
avg_start_pr = avg_start_pr_tot / num_divs
avg_close_pr = avg_close_pr_tot / num_divs
avg_dif = avg_dif_tot / num_divs
#print(word, " $",start_price, " fin price:",end_price, " avg start",avg_start_pr, " avg close",avg_close_pr, ' tot pos:',iPos," total neg:",iNeg, ' total div:',tot_div, ' avg p diff:',avg_dif)
#
print(word,',',start_price,',',end_price,',',avg_start_pr,',',avg_close_pr,',',iPos,',',iNeg,',',tot_div,',',avg_dif, end='\r')
df_a.loc[df_index,['StartPrice','EndPrice','AvgStartPrice','AvgClosePrice','Positives','Negatives','TotalDiv','AvgDifference']] = [start_price,end_price,avg_start_pr,avg_close_pr,iPos,iNeg,tot_div,avg_dif]
else:
# there are no dividends to calc.. sno need to update the data frame...
print(word, ' has no dividends', end='\r')
except Exception as e:
print(word, ' exception ',e)
#quit()
finally:
return df_a
def main():
#SAMPLE_RANGE_NAME = 'StockData!A1:B'
#SHEET_DATA = 'StockData'
SHEET_DATA = 'StockTest'
SHEET_INFO = 'Information'
WORKBOOK_ID = '1KQ_SKEFS1LJ6RBzgdJqimqiG3DD75tl5WHJV293bMMQ'
#in each of the libraries list the list of fields to cycle thru
yf_fields = ['Quote Price','PE Ratio (TTM)','Beta (5Y Monthly)']
y_fields = ['shortName','lastDividendValue','dividendYield','payoutRatio','returnOnEquity','debtToEquity','earningsGrowth','freeCashflow','returnOnAssets','returnOnEquity']
f_fields = ['Company','Price','P/E','Dividend','Dividend %','Payout','ROE','Debt/Eq','ROI','PEG','P/FCF']
#now for each of the libraries need to map their column name to the name in the master dataframe -
f_dict = {'Company': 'Name','Price':'Price','P/E':'PE','Dividend':'Dividend','Dividend %':'Dividend Yield','Payout':'Payout','ROE':'ROE','Debt/Eq':'Debt2Eq','PEG':'PEG','P/FCF':'P/FCF','ROI':'ROI'}
y_dict = {'shortName':'Name','lastDividendValue':'Dividend','dividendYield':'Dividend Yield','payoutRatio':'Payout','returnOnEquity':'ROE','debtToEquity':'Debt2Eq','earningsGrowth':'E-Growth','freeCashflow':'FCF','returnOnAssets':'ROA'}
yf_dict = {'Quote Price':'Price','PE Ratio (TTM)':'PE','Beta (5Y Monthly)':'Beta'}
print("settings ticked off")
#set shome defaults
debug = False
#words = []
#working = True
i = 0
#dummy = 0
#fileOrInput = 1
#inputfile = "ticknov.txt"
#inputfile = "ticknov.txt"
# login to google - and assing gs to the Workbook.
gs = getGoogleCreds(WORKBOOK_ID)
# select a work sheet from its name
INFO_WORKSHEET = gs.worksheet(SHEET_INFO)
DATA_WORKSHEET = gs.worksheet(SHEET_DATA)
# get the current data frame
#create the dataframe with columsn
# This is the old Dataframe creation where i got data from files..
df_new = pd.DataFrame(columns=['Ticker','Name','Price','PE','Beta','Dividend','Dividend Yield','Payout','ROE','Debt2Eq','E-Growth','FCF','ROI','PEG','P/FCF','ROA','Stochastic','StartPrice','EndPrice','AvgStartPrice','AvgClosePrice','Positives','Negatives','TotalDiv','AvgDifference'])
df_old = getCurrentGoogleSheetData(DATA_WORKSHEET)
words = turnDFinfoStockList(df_old)
for word in words:
#create a data frame
df2 = pd.DataFrame([[word]], columns=['Ticker'])
# a chaeaters way of joining the two which appends ticker to the main dataframe...
df_new = pd.concat([df_new,df2],ignore_index=True)
df_new = getFinViz(word, df_new, f_fields,f_dict,debug)
df_new = getYahoofin(word,df_new,y_fields, y_dict, i, debug)
df_new = getSi(word, df_new, yf_fields, yf_dict, i, debug)
df_new = getDivVPrice(word, df_new, i)
# counter used to make it easier to find Pandas location (index)
i = i + 1
print('analysis ',i,' symbol:',word,end='\r')
sleep(5)
#df.to_csv('Q4_Analysis.csv')
print(df_new.head())
#Now write the Dataframe Back to the Spreadsheet
print('writing to dataframe')
DATA_WORKSHEET.clear()
set_with_dataframe(worksheet=DATA_WORKSHEET, dataframe=df_new, include_index=True,include_column_header=True, resize=False)
# Update the Information Sheet with the Last Update Date/Time
updateLastUpdate(INFO_WORKSHEET)
updateIndexB1(DATA_WORKSHEET)
print('end')
# Using the special variable
# __name__
if __name__=="__main__":
main()