-
Notifications
You must be signed in to change notification settings - Fork 0
/
babi_memnn.py
231 lines (194 loc) · 8.28 KB
/
babi_memnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
'''
#Trains a memory network on the bAbI dataset.
References:
- Jason Weston, Antoine Bordes, Sumit Chopra, Tomas Mikolov, Alexander M. Rush,
["Towards AI-Complete Question Answering:
A Set of Prerequisite Toy Tasks"](http://arxiv.org/abs/1502.05698)
- Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus,
["End-To-End Memory Networks"](http://arxiv.org/abs/1503.08895)
Reaches 98.6% accuracy on task 'single_supporting_fact_10k' after 120 epochs.
Time per epoch: 3s on CPU (core i7).
'''
from __future__ import print_function
from keras.models import Sequential, Model
from keras.layers.embeddings import Embedding
from keras.layers import Input, Activation, Dense, Permute, Dropout
from keras.layers import add, dot, concatenate
from keras.layers import LSTM
from keras.utils.data_utils import get_file
from keras.preprocessing.sequence import pad_sequences
from functools import reduce
import tarfile
import numpy as np
import re
def tokenize(sent):
'''Return the tokens of a sentence including punctuation.
>>> tokenize('Bob dropped the apple. Where is the apple?')
['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?']
'''
return [x.strip() for x in re.split(r'(\W+)?', sent) if x.strip()]
def parse_stories(lines, only_supporting=False):
'''Parse stories provided in the bAbi tasks format
If only_supporting is true, only the sentences
that support the answer are kept.
'''
data = []
story = []
for line in lines:
line = line.decode('utf-8').strip()
nid, line = line.split(' ', 1)
nid = int(nid)
if nid == 1:
story = []
if '\t' in line:
q, a, supporting = line.split('\t')
q = tokenize(q)
if only_supporting:
# Only select the related substory
supporting = map(int, supporting.split())
substory = [story[i - 1] for i in supporting]
else:
# Provide all the substories
substory = [x for x in story if x]
data.append((substory, q, a))
story.append('')
else:
sent = tokenize(line)
story.append(sent)
return data
def get_stories(f, only_supporting=False, max_length=None):
'''Given a file name, read the file,
retrieve the stories,
and then convert the sentences into a single story.
If max_length is supplied,
any stories longer than max_length tokens will be discarded.
'''
data = parse_stories(f.readlines(), only_supporting=only_supporting)
flatten = lambda data: reduce(lambda x, y: x + y, data)
data = [(flatten(story), q, answer) for story, q, answer in data
if not max_length or len(flatten(story)) < max_length]
return data
def vectorize_stories(data):
inputs, queries, answers = [], [], []
for story, query, answer in data:
inputs.append([word_idx[w] for w in story])
queries.append([word_idx[w] for w in query])
answers.append(word_idx[answer])
return (pad_sequences(inputs, maxlen=story_maxlen),
pad_sequences(queries, maxlen=query_maxlen),
np.array(answers))
try:
path = get_file('babi-tasks-v1-2.tar.gz',
origin='https://s3.amazonaws.com/text-datasets/'
'babi_tasks_1-20_v1-2.tar.gz')
except:
print('Error downloading dataset, please download it manually:\n'
'$ wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2'
'.tar.gz\n'
'$ mv tasks_1-20_v1-2.tar.gz ~/.keras/datasets/babi-tasks-v1-2.tar.gz')
raise
challenges = {
# QA1 with 10,000 samples
'single_supporting_fact_10k': 'tasks_1-20_v1-2/en-10k/qa1_'
'single-supporting-fact_{}.txt',
# QA2 with 10,000 samples
'two_supporting_facts_10k': 'tasks_1-20_v1-2/en-10k/qa2_'
'two-supporting-facts_{}.txt',
}
challenge_type = 'single_supporting_fact_10k'
challenge = challenges[challenge_type]
print('Extracting stories for the challenge:', challenge_type)
with tarfile.open(path) as tar:
train_stories = get_stories(tar.extractfile(challenge.format('train')))
test_stories = get_stories(tar.extractfile(challenge.format('test')))
vocab = set()
for story, q, answer in train_stories + test_stories:
vocab |= set(story + q + [answer])
vocab = sorted(vocab)
# Reserve 0 for masking via pad_sequences
vocab_size = len(vocab) + 1
story_maxlen = max(map(len, (x for x, _, _ in train_stories + test_stories)))
query_maxlen = max(map(len, (x for _, x, _ in train_stories + test_stories)))
print('-')
print('Vocab size:', vocab_size, 'unique words')
print('Story max length:', story_maxlen, 'words')
print('Query max length:', query_maxlen, 'words')
print('Number of training stories:', len(train_stories))
print('Number of test stories:', len(test_stories))
print('-')
print('Here\'s what a "story" tuple looks like (input, query, answer):')
print(train_stories[0])
print('-')
print('Vectorizing the word sequences...')
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
inputs_train, queries_train, answers_train = vectorize_stories(train_stories)
inputs_test, queries_test, answers_test = vectorize_stories(test_stories)
print('-')
print('inputs: integer tensor of shape (samples, max_length)')
print('inputs_train shape:', inputs_train.shape)
print('inputs_test shape:', inputs_test.shape)
print('-')
print('queries: integer tensor of shape (samples, max_length)')
print('queries_train shape:', queries_train.shape)
print('queries_test shape:', queries_test.shape)
print('-')
print('answers: binary (1 or 0) tensor of shape (samples, vocab_size)')
print('answers_train shape:', answers_train.shape)
print('answers_test shape:', answers_test.shape)
print('-')
print('Compiling...')
# placeholders
input_sequence = Input((story_maxlen,))
question = Input((query_maxlen,))
# encoders
# embed the input sequence into a sequence of vectors
input_encoder_m = Sequential()
input_encoder_m.add(Embedding(input_dim=vocab_size,
output_dim=64))
input_encoder_m.add(Dropout(0.3))
# output: (samples, story_maxlen, embedding_dim)
# embed the input into a sequence of vectors of size query_maxlen
input_encoder_c = Sequential()
input_encoder_c.add(Embedding(input_dim=vocab_size,
output_dim=query_maxlen))
input_encoder_c.add(Dropout(0.3))
# output: (samples, story_maxlen, query_maxlen)
# embed the question into a sequence of vectors
question_encoder = Sequential()
question_encoder.add(Embedding(input_dim=vocab_size,
output_dim=64,
input_length=query_maxlen))
question_encoder.add(Dropout(0.3))
# output: (samples, query_maxlen, embedding_dim)
# encode input sequence and questions (which are indices)
# to sequences of dense vectors
input_encoded_m = input_encoder_m(input_sequence)
input_encoded_c = input_encoder_c(input_sequence)
question_encoded = question_encoder(question)
# compute a 'match' between the first input vector sequence
# and the question vector sequence
# shape: `(samples, story_maxlen, query_maxlen)`
match = dot([input_encoded_m, question_encoded], axes=(2, 2))
match = Activation('softmax')(match)
# add the match matrix with the second input vector sequence
response = add([match, input_encoded_c]) # (samples, story_maxlen, query_maxlen)
response = Permute((2, 1))(response) # (samples, query_maxlen, story_maxlen)
# concatenate the match matrix with the question vector sequence
answer = concatenate([response, question_encoded])
# the original paper uses a matrix multiplication for this reduction step.
# we choose to use a RNN instead.
answer = LSTM(32)(answer) # (samples, 32)
# one regularization layer -- more would probably be needed.
answer = Dropout(0.3)(answer)
answer = Dense(vocab_size)(answer) # (samples, vocab_size)
# we output a probability distribution over the vocabulary
answer = Activation('softmax')(answer)
# build the final model
model = Model([input_sequence, question], answer)
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# train
model.fit([inputs_train, queries_train], answers_train,
batch_size=32,
epochs=120,
validation_data=([inputs_test, queries_test], answers_test))