forked from hoanhan101/algo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knapsack_test.go
175 lines (145 loc) · 4.88 KB
/
knapsack_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
Problem:
- Given a set of items, each with a weight and a value, determine the number of
each item to include in a collection so that the total weight is less or equal
than a given limit and the total value is as large as possible.
Example:
- Input: a set of fruit items, with their weights and profits as follow
fruit : apple | orange | banana | melon
weight : 2 | 3 | 1 | 4
profit : 4 | 5 | 3 | 7
& knapsack capacity = 5
Output: banana & melon
Explanation: banana and melon gives the maximum profit of 10 and weight exactly 5
- Input: weight : 1 | 6 | 10 | 16
profit : 1 | 2 | 3 | 5
& knapsack capacity = 7
Output: 22
Explanation: 16+6 gives the largest profit and weights exactly 7
Brute-force approach:
- First, calculate the profit for the item at the current index.
- If the total weight does not exceed the capacity, recursively process
the remaining capacity and items.
- Second, recursively process after excluding the item at the current index.
- Return the higher profit between these two.
Cost:
- Brute-force: O(2^n) time, O(n) space.
- Top-down: O(n*c) time, O(n*c) space where n is the number of items, c is the knapsack capacity.
- Bottom-up: O(n*c) time, O(n*c) space where n is the number of items, c is the knapsack capacity.
*/
package gtci
import (
"testing"
"github.com/hoanhan101/algo/common"
)
func TestKnapsack(t *testing.T) {
tests := []struct {
in1 []int
in2 []int
in3 int
expected int
}{
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, -1, 0},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 0, 0},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 1, 1},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 2, 6},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 3, 10},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 4, 11},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 5, 16},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 6, 17},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 7, 22},
{[]int{1, 6, 10, 16}, []int{1, 2, 3, 5}, 8, 26},
}
for _, tt := range tests {
common.Equal(
t,
tt.expected,
knapsackBF(tt.in1, tt.in2, tt.in3),
)
common.Equal(
t,
tt.expected,
knapsackTD(tt.in1, tt.in2, tt.in3),
)
common.Equal(
t,
tt.expected,
knapsackBU(tt.in1, tt.in2, tt.in3),
)
}
}
func knapsackBF(profits, weights []int, capacity int) int {
return knapsackBFRecur(profits, weights, capacity, 0)
}
func knapsackBFRecur(profits, weights []int, capacity, currentIndex int) int {
if capacity <= 0 || currentIndex >= len(profits) {
return 0
}
// first, calculate the profit for the item at the current index.
// if the total weight does not exceed the capacity, recursively process
// the remaining capacity and items.
profit1 := 0
if weights[currentIndex] <= capacity {
profit1 = profits[currentIndex] + knapsackBFRecur(profits, weights, capacity-weights[currentIndex], currentIndex+1)
}
// second, recursively process after excluding the item at the current index.
profit2 := knapsackBFRecur(profits, weights, capacity, currentIndex+1)
return common.Max(profit1, profit2)
}
func knapsackTD(profits, weights []int, capacity int) int {
// since for each recursive call, only capacity and current index change,
// can have a 2D array for memoization.
memo := make([][]int, len(profits))
for i := range memo {
memo[i] = make([]int, capacity+1)
}
return knapsackTDMemo(memo, profits, weights, capacity, 0)
}
func knapsackTDMemo(memo [][]int, profits, weights []int, capacity, currentIndex int) int {
if capacity <= 0 || currentIndex >= len(profits) {
return 0
}
// return immediately if found in cache.
if memo[currentIndex][capacity] != 0 {
return memo[currentIndex][capacity]
}
// calculate the profit for the item at the current index.
profit1 := 0
if weights[currentIndex] <= capacity {
profit1 = profits[currentIndex] + knapsackTDMemo(memo, profits, weights, capacity-weights[currentIndex], currentIndex+1)
}
// process after excluding the item at the current index.
profit2 := knapsackTDMemo(memo, profits, weights, capacity, currentIndex+1)
return common.Max(profit1, profit2)
}
func knapsackBU(profits, weights []int, capacity int) int {
n := len(profits)
if capacity <= 0 || n == 0 || len(weights) != n {
return 0
}
memo := make([][]int, n)
for i := range memo {
memo[i] = make([]int, capacity+1)
}
// if we have only one weight, we will take it if it is not more than the
// capacity.
for i := 0; i < capacity+1; i++ {
if weights[0] <= i {
memo[0][i] = profits[0]
}
}
for i := 1; i < n; i++ {
for c := 1; c < capacity+1; c++ {
profit1, profit2 := 0, 0
// include the item if it's not bigger than the capacity.
if weights[i] <= c {
profit1 = profits[i] + memo[i-1][c-weights[i]]
}
// exclude the item.
profit2 = memo[i-1][c]
// take the maximum.
memo[i][c] = common.Max(profit1, profit2)
}
}
return memo[n-1][capacity]
}