-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterferometer_epy_block_1_0.py
93 lines (75 loc) · 4.13 KB
/
Interferometer_epy_block_1_0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
Embedded Python Blocks:
Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to __init__ will
be the parameters. All of them are required to have default values!
"""
import numpy as np
from gnuradio import gr
import time
from datetime import datetime
class csv_filesink(gr.sync_block):
"""
This block is controlled by the string variable save_toggle: if save_toggle = "True" (a string, not boolean), the data is written to a new .csv file every new integration time. The minimum integration time for the block to work is 0.1 s.
"""
def __init__(self, vec_length=512, samp_rate=2400000, freq=610000000, prefix="", save_toggle="True", integration_select=0, short_long_time_scale=1, az="", elev="", location=""):
gr.sync_block.__init__(self,
name="csv_filesink",
in_sig=[(np.float32, int(vec_length))],
out_sig=None)
self.vec_length = int(vec_length)
self.samp_rate = samp_rate
self.freq = freq
self.prefix = prefix
self.save_toggle = save_toggle
self.integration_select = integration_select
self.short_long_time_scale = short_long_time_scale
self.az = az
self.elev = elev
self.location = location
self.frequencies = np.arange(freq - samp_rate/2, freq + samp_rate/2, samp_rate/vec_length)[:vec_length]
self.data_array = np.zeros((vec_length,2))
self.N_long_counter = 0
self.spectrum = np.zeros(vec_length)
def work(self, input_items, output_items):
# in0 = input_items[0]
# self.spectrum[:] = in0
in0_buffer = input_items[0]
for in0 in in0_buffer:
# <+signal processing here+>
if self.save_toggle == "True": #If true, capture the spectrum to a new .csv text file each integration.
if self.integration_select == 0:
current_time = time.time()
self.timenow = datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")[:-5]
#write (freq, output) as a column array to a text file, titled e.g. "2018-07-24_15.15.49_spectrum.txt"
# The "prefix", i.e. the file path, is defined in the prefix variable box in the .grc program.
self.textfilename = self.prefix + self.timenow + "_PSD.csv"
self.data_array[:,0] = np.round(self.frequencies/1e6, decimals=4)
self.data_array[:,1] = np.round(in0, decimals=4)
np.savetxt(self.textfilename, self.data_array, delimiter=',')
self.N_long_counter = self.N_long_counter + 1 #Increase counter for long integration print to .csv
else:
if self.N_long_counter >= self.short_long_time_scale-1:
current_time = time.time()
self.timenow = datetime.now().strftime("%Y-%m-%d_%H.%M.%S.%f")[:-5]
#write (freq, output) as a column array to a text file, titled e.g. "2018-07-24_15.15.49_spectrum.txt"
# The "prefix", i.e. the file path, is defined in the prefix variable box in the .grc program.
self.textfilename = self.prefix + self.timenow + "_PSD.csv"
self.data_array[:,0] = np.round(self.frequencies/1e6, decimals=4)
self.data_array[:,1] = np.round(in0, decimals=4)
np.savetxt(self.textfilename, self.data_array, delimiter=',')
#
self.N_long_counter = 0
else:
self.N_long_counter = self.N_long_counter + 1 #Increase counter for long integration print to .csv
return len(input_items[0])
def set_save_toggle(self, save_toggle):
self.save_toggle = save_toggle
def set_integration_select(self, integration_select):
self.integration_select = integration_select
def set_az(self, az):
self.az = az
def set_elev(self, elev):
self.elev = elev
def set_location(self, location):
self.location = location