-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.mjs
403 lines (363 loc) · 10.3 KB
/
index.mjs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import OpenAI from "openai";
import FlatCache from "flat-cache";
import { DateTime, Interval } from "luxon";
import * as ReadLine from "node:readline/promises";
import * as Fs from "node:fs/promises";
import { scheduleJob } from "node-schedule";
import { config } from "dotenv";
import { program } from "commander";
import { execa } from "execa";
import { stdin as input, stdout as output } from "node:process";
import {
GPT_EMOJI_REACTION_SYSEM_MESSAGE,
GPT_THERAPIST_SYSEM_MESSAGE,
} from "./systems.mjs";
// SETUP ---------------
// Load .env definitions
config();
// GLOBAL VARIABLES ---------------
/** Interval at which to read and respond to messages */
const READ_CRON_INTERVAL = "0-59 * * * *"; // Every minute
/** Interval at which to seek contact with the patient */
const CONTACT_CRON_INTERVAL = "0 16 * * *"; // At 16.00
/** API Key to ChatGPT */
const GPT_API_KEY = process.env.GPT_API_KEY;
/** Phone number to use in Signal for messages */
const PHONE_NUMBER = process.env.SIGNAL_PHONE_NUMBER;
/** The name of the user */
const USER_NAME = process.env.USER_NAME;
/** Authenticated connection to the Chat GPT API */
const ChatGPTConnection = new OpenAI({
apiKey: GPT_API_KEY,
});
/** Cached session information */
const CACHE = FlatCache.load("tja");
/** Current state of any ongoing session */
const SESSION = {
/** Id for serializing the session */
ID: "",
/** Current or initial topic of discussion, i.e. question from the assistant */
TOPIC: "",
/** The journal entry for the current session */
JOURNAL: "",
/** Conversation history */
CONVERSATION: [],
/** Time the session started */
STARTED: undefined,
/** Time the session ended, or the current conversation time if still active */
ENDED: undefined,
/** Duration of the session in minutes */
DURATION: 0,
/** Indicates that the session is active, otherwise it has ended */
ACTIVE: false,
/** Persistent patient profile */
PATIENT_PROFILE: CACHE.getKey("PATIENT_PROFILE") || [],
};
/** Indicates that we are running a test in the terminal, otherwise uses Signal */
let IS_TERMINAL = false;
// FUNCTIONS ---------------
async function getTheraputicResponseFromLLM(msg, retries = 3) {
try {
console.log("[LLM RESPONSE]", `Getting a response from the LLM...`);
// Calculate the current duration of the session
SESSION.ENDED = DateTime.now();
SESSION.DURATION = Interval.fromDateTimes(
SESSION.STARTED,
SESSION.ENDED
).length("minutes");
// Update the conversation
SESSION.CONVERSATION.push({
role: "assistant",
content: SESSION.TOPIC,
});
SESSION.CONVERSATION.push({
role: "user",
content: msg.text,
});
// Get the response from the LLM
const response = await ChatGPTConnection.chat.completions.create({
model: "gpt-3.5-turbo-0125",
response_format: { type: "json_object" },
messages: [
{
role: "system",
content: GPT_THERAPIST_SYSEM_MESSAGE({
name: USER_NAME,
currentDuration: SESSION.DURATION,
currentTime: SESSION.ENDED.toLocaleString(
DateTime.DATETIME_SHORT
)
}),
},
...SESSION.CONVERSATION
],
});
// Try to parse the answer as json
try {
console.log(response.choices[0].message.content);
const json = JSON.parse(response.choices[0].message.content);
// Update session variables and the patient profile
SESSION.JOURNAL = json["JournalEntry"];
SESSION.PATIENT_PROFILE = [
...SESSION.PATIENT_PROFILE,
...(json["PatientProfile"] || []),
];
// Update the cache
CACHE.setKey("PATIENT_PROFILE", SESSION.PATIENT_PROFILE);
CACHE.setKey("SESSION" + SESSION.ID, SESSION);
// Write to file
await Fs.writeFile(`./history/id-${SESSION.ID}-${SESSION.ENDED.toMillis()}`, JSON.stringify({ RESPONSE: json, SESSION }, null, 4),{ encoding: 'utf8'})
// Figure out the next question and whenever or not to end the session and
// update the topic being discussed
SESSION.TOPIC =
json["EndOfSessionResponse"] ||
(json["NextSuggestions"] && json["NextSuggestions"][1]) ||
(json["NextSuggestions"] && json["NextSuggestions"][0]) ||
(json["NextSuggestion"] && json["NextSuggestion"][0]) ||
SESSION.TOPIC;
SESSION.ACTIVE = !json["EndOfSessionResponse"];
if (IS_TERMINAL) {
console.log({ RESPONSE: json, SESSION });
}
return [SESSION.TOPIC, null];
} catch (err) {
// Try again until valid json is returned
console.error(err);
if (!retries > 0) {
throw new Error(
"Failed to parse json within the allowed number of retries"
);
}
return getTheraputicResponseFromLLM(msg, retries - 1);
}
} catch (err) {
console.error("[LLM RESPONSE]", String(err));
return [null, err];
}
}
async function getReactionFromLLM(msg) {
try {
if (IS_TERMINAL) {
return [null, null];
}
console.log("[LLM REACTION]", `Getting a response from the LLM...`);
const answer = await ChatGPTConnection.chat.completions.create({
model: "gpt-3.5-turbo-0125",
messages: [
{
role: "system",
content: GPT_EMOJI_REACTION_SYSEM_MESSAGE(),
},
],
});
const text = answer.choices[0].message.content;
if (text == "0") {
return [null, null];
}
return [text, null];
} catch (err) {
console.error("[LLM REACTION]", String(err));
return [null, err];
}
}
async function sendMessageReaction(msg, emoji) {
console.log(`[REACT TO MESSAGE] Reacting to "${msg.text}" with ${emoji}`);
try {
await execa("signal-cli", [
"-o",
"json",
"-u",
PHONE_NUMBER,
"sendReaction",
PHONE_NUMBER,
"-e",
emoji,
"-t",
msg.timestamp,
"-a",
PHONE_NUMBER,
]);
return [null, null];
} catch (err) {
console.error("[REACT TO MESSAGE]", String(err));
return [null, err];
}
}
async function sendMessage(text) {
if (IS_TERMINAL) {
console.log(text);
return [null, null];
}
try {
console.log(`[SEND MESSAGE] Sending a Signal message: ${text}`);
await execa("signal-cli", [
"-o",
"json",
"-u",
PHONE_NUMBER,
"send",
"-m",
text,
PHONE_NUMBER,
"--notify-self",
]);
return [null, null];
} catch (err) {
console.error("[SEND MESSAGE]", String(err));
return [null, err];
}
}
async function readIncommingMessages() {
try {
if (IS_TERMINAL) {
console.log("\n");
let rl = ReadLine.createInterface({ input, output });
const text = await rl.question("> ");
const messages = [
{
text,
timestamp: new Date().getTime(),
},
];
rl.close();
return [messages, null];
}
const { stdout } = await execa("signal-cli", [
"-o",
"json",
"-u",
PHONE_NUMBER,
"receive",
"--ignore-stories",
]);
const messages = stdout
.split("\n")
.filter((msg) => msg.length)
.map((msg) => JSON.parse(msg))
.filter((msg) => msg.envelope.sourceNumber == PHONE_NUMBER)
.filter((msg) => !!msg.envelope.syncMessage?.sentMessage)
.map((msg) => msg.envelope.syncMessage)
.filter((smsg) => smsg.sentMessage.destinationNumber == PHONE_NUMBER)
.map((smsg) => ({
timestamp: smsg.sentMessage.timestamp,
text: smsg.sentMessage.message,
}));
console.log(`[READ MESSAGES] Found ${messages.length} new messages`);
return [messages, null];
} catch (err) {
console.error("[READ MESSAGES]", String(err));
return [[], err];
}
}
/** Creates a new session if the previous one has ended or if the time since messages was sent last time is over 8 hours */
async function createSession() {
try {
if (!SESSION.ACTIVE || Interval.fromDateTimes(
SESSION.ENDED,
DateTime.now()
).length("hours") > 8) {
console.log("[CREATE SESSION]", `Initializing a new session...`);
SESSION.ID = DateTime.now().toMillis();
SESSION.STARTED = DateTime.now();
SESSION.ENDED = DateTime.now();
SESSION.DURATION = 0;
SESSION.CONVERSATION = [];
SESSION.JOURNAL = "";
SESSION.TOPIC = "Tja! Hur var din dag idag?";
SESSION.ACTIVE = true;
return [true, null];
}
// Keep the current session active
else {
return [false, null];
}
} catch (err) {
console.error("[SEEK CONTACT]", String(err));
return [null, err];
}
}
async function seekContact(waitTime = 0) {
try {
if (!waitTime) {
console.log("[SEEK CONTACT]", `Randomizing a wait interval`);
const hours = Math.round(Math.random() * 2); // Between 0-2 hours
const minutes = Math.round(Math.random() * 60); // Between 0-60 minutes
console.log(
"[SEEK CONTACT]",
`Waiting for ${hours} h ${minutes} minutes`
);
waitTime = (hours * 60 + minutes) * 60 * 1000;
}
return await new Promise((resolve) => {
setTimeout(() => {
createSession().then(([sessionIsNew]) => {
if (sessionIsNew) {
sendMessage(SESSION.TOPIC);
}
resolve([null, null]);
});
}, waitTime);
});
} catch (err) {
console.error("[SEEK CONTACT]", String(err));
return [null, err];
}
}
async function respondToMessages() {
try {
console.log(`[RESPOND TO MESSAGES] Reading incomming messages...`);
const [messages] = await readIncommingMessages();
if (messages.length) {
await createSession();
}
for (const msg of messages) {
getReactionFromLLM(msg).then(([emoji]) => {
if (emoji) {
sendMessageReaction(msg, emoji);
}
});
const [response] = await getTheraputicResponseFromLLM(msg);
if (response) {
sendMessage(response);
}
}
}
catch (err) {
console.error("[RESPOND TO MESSAGS]", String(err));
return [null, err];
}
}
// PROGAM DEFINITION ---------------
// Set general program description
program
.name("Therapeutic Journaling Assistant")
.description(
"Signal Service Integrating with the 'note-to-self' feature to allow scheduled journal entries with therapeutic advice."
);
// Add test session command
program
.command("test")
.description("Perform a single session conversation in the terminal")
.action(async () => {
IS_TERMINAL = true;
await seekContact(100);
while (SESSION.ACTIVE) {
await respondToMessages();
}
console.log(`[PROGRAM] Completed test execution`);
});
// Add start session service command
program
.command("start", { isDefault: true })
.description(
"Run the service and seek contact and read incomming messages on an interval"
)
.action(async () => {
scheduleJob(READ_CRON_INTERVAL, respondToMessages);
scheduleJob(CONTACT_CRON_INTERVAL, seekContact);
console.log(
`[PROGRAM] The service is now running and will seek contact and read messages on an interval`
);
});
// PROGRAM EXECUTION ---------------
program.program.parse();