-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils_classifiers.py
109 lines (77 loc) · 3.58 KB
/
utils_classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# -*- coding: utf-8 -*-
"""
Utility methods for handling the classifiers:
set_caffe_mode(gpu)
get_caffenet(netname)
forward_pass(net, x, blobnames='prob', start='data')
"""
# this is to supress some unnecessary output of caffe in the linux console
import os
os.environ['GLOG_minloglevel'] = '2'
import numpy as np
import caffe
def set_caffe_mode(gpu):
''' Set whether caffe runs in gpu or not, input is boolean '''
if gpu:
caffe.set_mode_gpu()
else:
caffe.set_mode_cpu()
def get_caffenet(netname):
if netname=='googlenet':
# caffemodel paths
model_path = './Caffe_Models/googlenet/'
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'
# get the mean (googlenet doesn't do this per feature, but per channel, see train_val.prototxt)
mean = np.float32([104.0, 117.0, 123.0])
# define the neural network classifier
net = caffe.Classifier(net_fn, param_fn, caffe.TEST, channel_swap = (2,1,0), mean = mean)
elif netname=='alexnet':
# caffemodel paths
model_path = './Caffe_Models/bvlc_alexnet/'
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_alexnet.caffemodel'
# get the mean
mean = np.load('./Caffe_Models/ilsvrc_2012_mean.npy')
# crop mean
image_dims = (227,227) # see deploy.prototxt file
excess_h = mean.shape[1] - image_dims[0]
excess_w = mean.shape[2] - image_dims[1]
mean = mean[:, excess_h:(excess_h+image_dims[0]), excess_w:(excess_w+image_dims[1])]
# define the neural network classifier
net = caffe.Classifier(net_fn, param_fn, caffe.TEST, channel_swap = (2,1,0), mean = mean)
elif netname == 'vgg':
# caffemodel paths
model_path = './Caffe_Models/vgg network/'
net_fn = model_path + 'VGG_ILSVRC_16_layers_deploy.prototxt'
param_fn = model_path + 'VGG_ILSVRC_16_layers.caffemodel'
mean = np.float32([103.939, 116.779, 123.68])
# define the neural network classifier
net = caffe.Classifier(net_fn, param_fn, caffe.TEST, channel_swap = (2,1,0), mean = mean)
else:
print 'Provided netname unknown. Returning None.'
net = None
return net
def forward_pass(net, x, blobnames='prob', start='data'):
'''
Defines a forward pass (modified for our needs)
Input: net the network (caffe model)
x the input, a batch of imagenet images
blobnames for which layers we want to return the output,
default is output layer ('prob')
start in which layer to start the forward pass
'''
# get input into right shape
if np.ndim(x)==3:
x = x[np.newaxis]
if np.ndim(x)<4:
input_shape = net.blobs[start].data.shape
x = x.reshape([x.shape[0]]+list(input_shape)[1:])
# reshape net so it fits the batchsize (implicitly given by x)
if net.blobs['data'].data.shape[0] != x.shape[0]:
net.blobs['data'].reshape(*(x.shape))
# feed forward the batch through the next
net.forward_all(data=x)
# collect outputs of the blobs we're interested in
returnVals = [np.copy(net.blobs[b].data[:]) for b in blobnames]
return returnVals