-
Notifications
You must be signed in to change notification settings - Fork 16
/
loss.py
72 lines (58 loc) · 2.75 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
""" © 2018, lizhengwei """
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, sigma, channel):
_1D_window = gaussian(window_size, sigma).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
class MS_SSIM(torch.nn.Module):
def __init__(self, size_average = True, max_val = 255):
super(MS_SSIM, self).__init__()
self.size_average = size_average
self.channel = 3
self.max_val = max_val
def _ssim(self, img1, img2, size_average = True):
_, c, w, h = img1.size()
window_size = min(w, h, 11)
sigma = 1.5 * window_size / 11
window = create_window(window_size, sigma, self.channel).cuda()
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = self.channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = self.channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = self.channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = self.channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = self.channel) - mu1_mu2
C1 = (0.01*self.max_val)**2
C2 = (0.03*self.max_val)**2
V1 = 2.0 * sigma12 + C2
V2 = sigma1_sq + sigma2_sq + C2
ssim_map = ((2*mu1_mu2 + C1)*V1)/((mu1_sq + mu2_sq + C1)*V2)
mcs_map = V1 / V2
if size_average:
return ssim_map.mean(), mcs_map.mean()
def ms_ssim(self, img1, img2, levels=5):
weight = Variable(torch.Tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).cuda())
msssim = Variable(torch.Tensor(levels,).cuda())
mcs = Variable(torch.Tensor(levels,).cuda())
for i in range(levels):
ssim_map, mcs_map = self._ssim(img1, img2)
msssim[i] = ssim_map
mcs[i] = mcs_map
filtered_im1 = F.avg_pool2d(img1, kernel_size=2, stride=2)
filtered_im2 = F.avg_pool2d(img2, kernel_size=2, stride=2)
img1 = filtered_im1
img2 = filtered_im2
value = (torch.prod(mcs[0:levels-1]**weight[0:levels-1])*
(msssim[levels-1]**weight[levels-1]))
return value
def forward(self, img1, img2):
return self.ms_ssim(img1, img2)