-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpreprocess.py
executable file
·206 lines (161 loc) · 7.07 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Pre-process Data / features files and build vocabulary
"""
import configargparse
import glob
import sys
import gc
import os
import codecs
import torch
from onmt.utils.logging import init_logger, logger
import onmt.inputters as inputters
import onmt.opts as opts
def check_existing_pt_files(opt):
""" Check if there are existing .pt files to avoid overwriting them """
pattern = opt.save_data + '.{}*.pt'
for t in ['train', 'valid', 'vocab']:
path = pattern.format(t)
if glob.glob(path):
sys.stderr.write("Please backup existing pt files: %s, "
"to avoid overwriting them!\n" % path)
sys.exit(1)
def parse_args():
parser = configargparse.ArgumentParser(
description='preprocess.py',
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter)
opts.config_opts(parser)
opts.add_md_help_argument(parser)
opts.preprocess_opts(parser)
opt = parser.parse_args()
torch.manual_seed(opt.seed)
check_existing_pt_files(opt)
return opt
def _write_shard(path, data, start, end=None):
with codecs.open(path, "w", encoding="utf-8") as f:
shard = data[start:end] if end is not None else data[start:]
f.writelines(shard)
def _write_temp_shard_files(corpus, fields, corpus_type, shard_size):
# Does this actually shard in a memory-efficient way? The readlines()
# reads in the whole corpus. Shards should be efficient at training time,
# but in principle it should not be necessary to read everything at once
# when preprocessing either.
with codecs.open(corpus, "r", encoding="utf-8") as f:
data = f.readlines()
corpus_size = len(data)
if shard_size <= 0:
shard_size = corpus_size
for i, start in enumerate(range(0, corpus_size, shard_size)):
logger.info("Splitting shard %d." % i)
end = start + shard_size
shard_path = corpus + ".{}.txt".format(i)
_write_shard(shard_path, data, start, end)
return corpus_size
def build_save_dataset(corpus_type, fields, opt):
assert corpus_type in ['train', 'valid']
if corpus_type == 'train':
knl = opt.train_knl
src = opt.train_src
tgt = opt.train_tgt
else:
knl = opt.valid_knl
src = opt.valid_src
tgt = opt.valid_tgt
logger.info("Reading source and target files: %s %s %s." % (knl, src, tgt))
knl_len = _write_temp_shard_files(knl, fields, corpus_type, opt.shard_size)
src_len = _write_temp_shard_files(src, fields, corpus_type, opt.shard_size)
tgt_len = _write_temp_shard_files(tgt, fields, corpus_type, opt.shard_size)
assert src_len == tgt_len == knl_len, "Source and target should be the same length"
knl_shards = sorted(glob.glob(knl + '.*.txt'))
src_shards = sorted(glob.glob(src + '.*.txt'))
tgt_shards = sorted(glob.glob(tgt + '.*.txt'))
shard_pairs = zip(knl_shards, src_shards, tgt_shards)
dataset_paths = []
for i, (knl_shard, src_shard, tgt_shard) in enumerate(shard_pairs):
logger.info("Building shard %d." % i)
dataset = inputters.build_dataset(
fields, opt.data_type,
src=src_shard,
knl=knl_shard,
tgt=tgt_shard,
src_dir=opt.src_dir,
knl_seq_len=opt.knl_seq_length,
src_seq_len=opt.src_seq_length,
tgt_seq_len=opt.tgt_seq_length,
knl_seq_length_trunc=opt.knl_seq_length_trunc,
src_seq_length_trunc=opt.src_seq_length_trunc,
tgt_seq_length_trunc=opt.tgt_seq_length_trunc,
dynamic_dict=opt.dynamic_dict,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
image_channel_size=opt.image_channel_size,
use_filter_pred=corpus_type == 'train' or opt.filter_valid
)
data_path = "{:s}.{:s}.{:d}.pt".format(opt.save_data, corpus_type, i)
dataset_paths.append(data_path)
logger.info(" * saving %sth %s data shard to %s."
% (i, corpus_type, data_path))
dataset.save(data_path)
os.remove(src_shard)
os.remove(tgt_shard)
os.remove(knl_shard)
del dataset.examples
gc.collect()
del dataset
gc.collect()
return dataset_paths
def build_save_vocab(train_dataset, fields, opt):
fields = inputters.build_vocab(
train_dataset, fields, opt.data_type, opt.share_vocab,
opt.knl_vocab, opt.knl_vocab_size, opt.knl_words_min_frequency,
opt.src_vocab, opt.src_vocab_size, opt.src_words_min_frequency,
opt.tgt_vocab, opt.tgt_vocab_size, opt.tgt_words_min_frequency
)
vocab_path = opt.save_data + '.vocab.pt'
torch.save(inputters.save_fields_to_vocab(fields), vocab_path)
def count_features(path):
"""
path: location of a corpus file with whitespace-delimited tokens and
│-delimited features within the token
returns: the number of features in the dataset
"""
with codecs.open(path, "r", "utf-8") as f:
first_tok = f.readline().split(None, 1)[0]
return len(first_tok.split(u"│")) - 1
def main():
opt = parse_args()
assert opt.max_shard_size == 0, \
"-max_shard_size is deprecated. Please use \
-shard_size (number of examples) instead."
assert opt.shuffle == 0, \
"-shuffle is not implemented. Please shuffle \
your data before pre-processing."
assert os.path.isfile(opt.train_src) and os.path.isfile(opt.train_tgt), \
"Please check path of your train src and tgt files!"
assert os.path.isfile(opt.valid_src) and os.path.isfile(opt.valid_tgt), \
"Please check path of your valid src and tgt files!"
init_logger(opt.log_file)
logger.info("Extracting features...")
knl_nfeats = count_features(opt.train_knl) if opt.data_type == 'text' \
else 0
src_nfeats = count_features(opt.train_src) if opt.data_type == 'text' \
else 0
tgt_nfeats = count_features(opt.train_tgt) # tgt always text so far
logger.info(" * number of knowledge features: %d." % knl_nfeats)
logger.info(" * number of source features: %d." % src_nfeats)
logger.info(" * number of target features: %d." % tgt_nfeats)
logger.info("Building `Fields` object...")
fields = inputters.get_fields(opt.data_type, src_nfeats, tgt_nfeats, knl_nfeats)
logger.info("Building & saving training data...")
train_dataset_files = build_save_dataset('train', fields, opt)
logger.info("Building & saving validation data...")
build_save_dataset('valid', fields, opt)
logger.info("Building & saving vocabulary...")
build_save_vocab(train_dataset_files, fields, opt)
if __name__ == "__main__":
main()