forked from ruiminshen/yolo-tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
executable file
·139 lines (122 loc) · 5.38 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Copyright (C) 2017, 申瑞珉 (Ruimin Shen)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import argparse
import configparser
import importlib
import itertools
from PIL import Image, ExifTags
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils.preprocess
import utils.postprocess
def std(image):
return utils.preprocess.per_image_standardization(image)
def darknet(image):
return image / 255.
def read_image(path):
image = Image.open(path)
for key in ExifTags.TAGS.keys():
if ExifTags.TAGS[key] == 'Orientation':
break
try:
exif = dict(image._getexif().items())
except AttributeError:
return image
if exif[key] == 3:
image = image.rotate(180, expand=True)
elif exif[key] == 6:
image = image.rotate(270, expand=True)
elif exif[key] == 8:
image = image.rotate(90, expand=True)
return image
def detect(sess, model, names, image, path):
preprocess = eval(args.preprocess)
_, height, width, _ = image.get_shape().as_list()
_image = read_image(path)
image_original = np.array(np.uint8(_image))
if len(image_original.shape) == 2:
image_original = np.repeat(np.expand_dims(image_original, -1), 3, 2)
image_height, image_width, _ = image_original.shape
image_std = preprocess(np.array(np.uint8(_image.resize((width, height)))).astype(np.float32))
feed_dict = {image: np.expand_dims(image_std, 0)}
tensors = [model.conf, model.xy_min, model.xy_max]
conf, xy_min, xy_max = sess.run([tf.check_numerics(t, t.op.name) for t in tensors], feed_dict=feed_dict)
boxes = utils.postprocess.non_max_suppress(conf[0], xy_min[0], xy_max[0], args.threshold, args.threshold_iou)
scale = [image_width / model.cell_width, image_height / model.cell_height]
fig = plt.figure()
ax = fig.gca()
ax.imshow(image_original)
colors = [prop['color'] for _, prop in zip(names, itertools.cycle(plt.rcParams['axes.prop_cycle']))]
cnt = 0
for _conf, _xy_min, _xy_max in boxes:
index = np.argmax(_conf)
if _conf[index] > args.threshold:
wh = _xy_max - _xy_min
_xy_min = _xy_min * scale
_wh = wh * scale
linewidth = min(_conf[index] * 10, 3)
ax.add_patch(patches.Rectangle(_xy_min, _wh[0], _wh[1], linewidth=linewidth, edgecolor=colors[index], facecolor='none'))
ax.annotate(names[index] + ' (%.1f%%)' % (_conf[index] * 100), _xy_min, color=colors[index])
cnt += 1
fig.canvas.set_window_title('%d objects detected' % cnt)
ax.set_xticks([])
ax.set_yticks([])
return fig
def main():
model = config.get('config', 'model')
yolo = importlib.import_module('model.' + model)
width = config.getint(model, 'width')
height = config.getint(model, 'height')
with tf.Session() as sess:
image = tf.placeholder(tf.float32, [1, height, width, 3], name='image')
builder = yolo.Builder(args, config)
builder(image)
global_step = tf.contrib.framework.get_or_create_global_step()
model_path = tf.train.latest_checkpoint(utils.get_logdir(config))
tf.logging.info('load ' + model_path)
slim.assign_from_checkpoint_fn(model_path, tf.global_variables())(sess)
tf.logging.info('global_step=%d' % sess.run(global_step))
path = os.path.expanduser(os.path.expandvars(args.path))
if os.path.isfile(path):
detect(sess, builder.model, builder.names, image, path)
plt.show()
else:
for dirpath, _, filenames in os.walk(path):
for filename in filenames:
if os.path.splitext(filename)[-1].lower() in args.exts:
_path = os.path.join(dirpath, filename)
print(_path)
detect(sess, builder.model, builder.names, image, _path)
plt.show()
def make_args():
parser = argparse.ArgumentParser()
parser.add_argument('path', help='input image path')
parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file')
parser.add_argument('-p', '--preprocess', default='std', help='the preprocess function')
parser.add_argument('-t', '--threshold', type=float, default=0.3)
parser.add_argument('--threshold_iou', type=float, default=0.4, help='IoU threshold')
parser.add_argument('-e', '--exts', nargs='+', default=['.jpg', '.png'])
parser.add_argument('--level', default='info', help='logging level')
return parser.parse_args()
if __name__ == '__main__':
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
if args.level:
tf.logging.set_verbosity(args.level.upper())
main()