-
Notifications
You must be signed in to change notification settings - Fork 49
/
knn_sentiment.py
124 lines (111 loc) · 4.27 KB
/
knn_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python3
# coding: utf-8
# File: knn_sentiment.py
# Author: lhy<[email protected],https://huangyong.github.io>
# Date: 18-3-20
import gensim
import numpy as np
from sklearn.externals import joblib
VECTOR_DIR = './embedding/word_vector.bin' # 词向量模型文件
model = gensim.models.KeyedVectors.load_word2vec_format(VECTOR_DIR, binary=False)
'''基于wordvector,通过lookup table的方式找到句子的wordvector的表示'''
def rep_sentencevector(sentence):
'''通过向量求和的方式标识sentence vector'''
word_list = [word for word in sentence.split(' ')]
embedding_dim = 200
embedding_matrix = np.zeros(embedding_dim)
for index, word in enumerate(word_list):
try:
embedding_matrix += model[word]
except:
pass
return embedding_matrix/len(word_list)
'''构造训练数据'''
def build_traindata():
X_train = list()
Y_train = list()
X_test = list()
Y_test = list()
for line in open('./data/train.txt'):
line = line.strip().strip().split('\t')
sent_vector = rep_sentencevector(line[-1])
X_train.append(sent_vector)
if line[0] == '1':
Y_train.append(1)
else:
Y_train.append(0)
for line in open('./data/test.txt'):
line = line.strip().strip().split('\t')
sent_vector = rep_sentencevector(line[-1])
X_test.append(sent_vector)
if line[0] == '1':
Y_test.append(1)
else:
Y_test.append(0)
return np.array(X_train), np.array(Y_train), np.array(X_test), np.array(Y_test),
'''基于knn分类器算法'''
def train_knn(X_train, Y_train, X_test, Y_test):
from sklearn.neighbors import KNeighborsClassifier
'''
for x in range(1, 15):
model = KNeighborsClassifier(n_neighbors=x)
model.fit(X_train, Y_train)
preds = knnclf.predict(X_test)
num = 0
num = 0
preds = preds.tolist()
for i, pred in enumerate(preds):
if int(pred) == int(Y_test[i]):
num += 1
print('K= ' + str(x) + ', precision_score:' + str(float(num) / len(preds)))
*****************result****************
K= 1, precision_score:0.7169056352117372
K= 2, precision_score:0.7189063021007003
K= 3, precision_score:0.7600866955651884
K= 4, precision_score:0.7519173057685895
K= 5, precision_score:0.764754918306102
K= 6, precision_score:0.7709236412137379
K= 7, precision_score:0.7724241413804601
K= 8, precision_score:0.7784261420473492
K= 9, precision_score:0.7804268089363121
K= 10, precision_score:0.7814271423807936
K= 11, precision_score:0.7829276425475158
K= 12, precision_score:0.7869289763254418
K= 13, precision_score:0.7829276425475158
K= 14, precision_score:0.7909303101033678
'''
#选择K=20进行KNN训练
model = KNeighborsClassifier(n_neighbors=14)
model.fit(X_train, Y_train)
joblib.dump(model, './model/sentiment_knn_model.m')
'''基于knn分类器的预测'''
def evaluate_knn(model_filepath, X_test, Y_test):
model = joblib.load(model_filepath)
Y_predict = list()
Y_test = list(Y_test)
right = 0
for sent in X_test:
Y_predict.append(model.predict(sent.reshape(1, -1)))
for index in range(len(Y_predict)):
if Y_predict[index] == Y_test[index]:
right += 1
score = right / len(Y_predict)
print('model accuray is :{0}'.format(score))#0.7909303101033678
return score
'''实际应用测试'''
def predict_knn(model_filepath):
model = joblib.load(model_filepath)
sentence1 = '这个 电视 真 尼玛 垃圾 , 老子 再也 不买 了'
sentence2 = '这件 衣服 真的 太 好看 了 ! 好想 买 啊 '
rep_sen1 = np.array(rep_sentencevector(sentence1)).reshape(1, -1)
rep_sen2 = np.array(rep_sentencevector(sentence2)).reshape(1, -1)
print('sentence1', model.predict(rep_sen1)) #[1]
print('sentence2', model.predict(rep_sen2)) #[0]
if __name__ == '__main__':
X_train, Y_train, X_test, Y_test = build_traindata()
model_filepath = './model/sentiment_knn_model.m'
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)
train_knn(X_train, Y_train, X_test, Y_test)
evaluate_knn(model_filepath, X_test, Y_test)
predict_knn(model_filepath)