From 315a429ad020fab96776da35a43ca83147b61c1b Mon Sep 17 00:00:00 2001 From: Marco Bortolami <53943184+marcobortolami@users.noreply.github.com> Date: Thu, 5 Oct 2023 17:55:24 +0200 Subject: [PATCH] Fix typo in dipole.rst --- docs/source/dipole.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/dipole.rst b/docs/source/dipole.rst index 8f1fab0b..747159b2 100644 --- a/docs/source/dipole.rst +++ b/docs/source/dipole.rst @@ -157,7 +157,7 @@ which kind of approximation to use: .. math:: \Delta T = \frac{T_0}{f(x)} \left(\frac{\mathrm{BB}\left(T_0 / \gamma\bigl(1 - \vec\beta\cdot\hat n\bigr)\right)}{\mathrm{BB}(T_0)} - 1\right) = - \frac{T_0}{f(x)} \left(\frac{\mathrm{BB}\bigl(\nu\gamma(1-\vec\beta\cdot\hat n), T_0\bigr)}{\bigl(\gamma(1-\vec\beta\cdot\hat n)\bigr)^3\mathrm{BB}(t_0)}\right). + \frac{T_0}{f(x)} \left(\frac{\mathrm{BB}\bigl(\nu\gamma(1-\vec\beta\cdot\hat n), T_0\bigr)}{\bigl(\gamma(1-\vec\beta\cdot\hat n)\bigr)^3\mathrm{BB}(T_0)}\right). In this case too, the temperature variation depends on the frequency because of :eq:`linearized-dipole`. This is the formula