There is a computer that can run an unlimited number of tasks at the same time. You are given a 2D integer array tasks
where tasks[i] = [starti, endi, durationi]
indicates that the ith
task should run for a total of durationi
seconds (not necessarily continuous) within the inclusive time range [starti, endi]
.
You may turn on the computer only when it needs to run a task. You can also turn it off if it is idle.
Return the minimum time during which the computer should be turned on to complete all tasks.
Example 1:
Input: tasks = [[2,3,1],[4,5,1],[1,5,2]] Output: 2 Explanation: - The first task can be run in the inclusive time range [2, 2]. - The second task can be run in the inclusive time range [5, 5]. - The third task can be run in the two inclusive time ranges [2, 2] and [5, 5]. The computer will be on for a total of 2 seconds.
Example 2:
Input: tasks = [[1,3,2],[2,5,3],[5,6,2]] Output: 4 Explanation: - The first task can be run in the inclusive time range [2, 3]. - The second task can be run in the inclusive time ranges [2, 3] and [5, 5]. - The third task can be run in the two inclusive time range [5, 6]. The computer will be on for a total of 4 seconds.
Constraints:
1 <= tasks.length <= 2000
tasks[i].length == 3
1 <= starti, endi <= 2000
1 <= durationi <= endi - starti + 1
Solution 1: Greedy + Sort
We find that the problem is equivalent to choosing
Therefore, we can sort the
In implementation, we can use a length of
Finally, we return
class Solution:
def findMinimumTime(self, tasks: List[List[int]]) -> int:
tasks.sort(key=lambda x: x[1])
vis = [0] * 2010
ans = 0
for start, end, duration in tasks:
duration -= sum(vis[start : end + 1])
i = end
while i >= start and duration > 0:
if not vis[i]:
duration -= 1
vis[i] = 1
ans += 1
i -= 1
return ans
class Solution {
public int findMinimumTime(int[][] tasks) {
Arrays.sort(tasks, (a, b) -> a[1] - b[1]);
int[] vis = new int[2010];
int ans = 0;
for (var task : tasks) {
int start = task[0], end = task[1], duration = task[2];
for (int i = start; i <= end; ++i) {
duration -= vis[i];
}
for (int i = end; i >= start && duration > 0; --i) {
if (vis[i] == 0) {
--duration;
ans += vis[i] = 1;
}
}
}
return ans;
}
}
class Solution {
public:
int findMinimumTime(vector<vector<int>>& tasks) {
sort(tasks.begin(), tasks.end(), [&](auto& a, auto& b) { return a[1] < b[1]; });
bitset<2010> vis;
int ans = 0;
for (auto& task : tasks) {
int start = task[0], end = task[1], duration = task[2];
for (int i = start; i <= end; ++i) {
duration -= vis[i];
}
for (int i = end; i >= start && duration > 0; --i) {
if (!vis[i]) {
--duration;
ans += vis[i] = 1;
}
}
}
return ans;
}
};
func findMinimumTime(tasks [][]int) (ans int) {
sort.Slice(tasks, func(i, j int) bool { return tasks[i][1] < tasks[j][1] })
vis := [2010]int{}
for _, task := range tasks {
start, end, duration := task[0], task[1], task[2]
for _, x := range vis[start : end+1] {
duration -= x
}
for i := end; i >= start && duration > 0; i-- {
if vis[i] == 0 {
vis[i] = 1
duration--
ans++
}
}
}
return
}
function findMinimumTime(tasks: number[][]): number {
tasks.sort((a, b) => a[1] - b[1]);
const vis = new Array(2010).fill(0);
let ans = 0;
for (let [start, end, duration] of tasks) {
for (let i = start; i <= end; ++i) {
duration -= vis[i];
}
for (let i = end; i >= start && duration > 0; --i) {
if (vis[i] === 0) {
--duration;
ans += vis[i] = 1;
}
}
}
return ans;
}