给你一个 n
个节点的 有向图 ,节点编号为 0
到 n - 1
,每个节点 至多 有一条出边。
有向图用大小为 n
下标从 0 开始的数组 edges
表示,表示节点 i
有一条有向边指向 edges[i]
。如果节点 i
没有出边,那么 edges[i] == -1
。
同时给你两个节点 node1
和 node2
。
请你返回一个从 node1
和 node2
都能到达节点的编号,使节点 node1
和节点 node2
到这个节点的距离 较大值最小化。如果有多个答案,请返回 最小 的节点编号。如果答案不存在,返回 -1
。
注意 edges
可能包含环。
示例 1:
输入:edges = [2,2,3,-1], node1 = 0, node2 = 1 输出:2 解释:从节点 0 到节点 2 的距离为 1 ,从节点 1 到节点 2 的距离为 1 。 两个距离的较大值为 1 。我们无法得到一个比 1 更小的较大值,所以我们返回节点 2 。
示例 2:
输入:edges = [1,2,-1], node1 = 0, node2 = 2 输出:2 解释:节点 0 到节点 2 的距离为 2 ,节点 2 到它自己的距离为 0 。 两个距离的较大值为 2 。我们无法得到一个比 2 更小的较大值,所以我们返回节点 2 。
提示:
n == edges.length
2 <= n <= 105
-1 <= edges[i] < n
edges[i] != i
0 <= node1, node2 < n
方法一:BFS + 枚举公共点
我们可以先用 BFS 求出从
时间复杂度
相似题目:2203.得到要求路径的最小带权子图
class Solution:
def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
def dijkstra(i):
dist = [inf] * n
dist[i] = 0
q = [(0, i)]
while q:
i = heappop(q)[1]
for j in g[i]:
if dist[j] > dist[i] + 1:
dist[j] = dist[i] + 1
heappush(q, (dist[j], j))
return dist
g = defaultdict(list)
for i, j in enumerate(edges):
if j != -1:
g[i].append(j)
n = len(edges)
d1 = dijkstra(node1)
d2 = dijkstra(node2)
ans, d = -1, inf
for i, (a, b) in enumerate(zip(d1, d2)):
if (t := max(a, b)) < d:
d = t
ans = i
return ans
class Solution:
def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
def f(i):
dist = [inf] * n
dist[i] = 0
q = deque([i])
while q:
i = q.popleft()
for j in g[i]:
if dist[j] == inf:
dist[j] = dist[i] + 1
q.append(j)
return dist
g = defaultdict(list)
for i, j in enumerate(edges):
if j != -1:
g[i].append(j)
n = len(edges)
d1 = f(node1)
d2 = f(node2)
ans, d = -1, inf
for i, (a, b) in enumerate(zip(d1, d2)):
if (t := max(a, b)) < d:
d = t
ans = i
return ans
class Solution {
private int n;
private List<Integer>[] g;
public int closestMeetingNode(int[] edges, int node1, int node2) {
n = edges.length;
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
if (edges[i] != -1) {
g[i].add(edges[i]);
}
}
int[] d1 = dijkstra(node1);
int[] d2 = dijkstra(node2);
int d = 1 << 30;
int ans = -1;
for (int i = 0; i < n; ++i) {
int t = Math.max(d1[i], d2[i]);
if (t < d) {
d = t;
ans = i;
}
}
return ans;
}
private int[] dijkstra(int i) {
int[] dist = new int[n];
Arrays.fill(dist, 1 << 30);
dist[i] = 0;
PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
q.offer(new int[] {0, i});
while (!q.isEmpty()) {
var p = q.poll();
i = p[1];
for (int j : g[i]) {
if (dist[j] > dist[i] + 1) {
dist[j] = dist[i] + 1;
q.offer(new int[] {dist[j], j});
}
}
}
return dist;
}
}
class Solution {
private int n;
private List<Integer>[] g;
public int closestMeetingNode(int[] edges, int node1, int node2) {
n = edges.length;
g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
if (edges[i] != -1) {
g[i].add(edges[i]);
}
}
int[] d1 = f(node1);
int[] d2 = f(node2);
int d = 1 << 30;
int ans = -1;
for (int i = 0; i < n; ++i) {
int t = Math.max(d1[i], d2[i]);
if (t < d) {
d = t;
ans = i;
}
}
return ans;
}
private int[] f(int i) {
int[] dist = new int[n];
Arrays.fill(dist, 1 << 30);
dist[i] = 0;
Deque<Integer> q = new ArrayDeque<>();
q.offer(i);
while (!q.isEmpty()) {
i = q.poll();
for (int j : g[i]) {
if (dist[j] == 1 << 30) {
dist[j] = dist[i] + 1;
q.offer(j);
}
}
}
return dist;
}
}
class Solution {
public:
int closestMeetingNode(vector<int>& edges, int node1, int node2) {
int n = edges.size();
vector<vector<int>> g(n);
for (int i = 0; i < n; ++i) {
if (edges[i] != -1) {
g[i].push_back(edges[i]);
}
}
const int inf = 1 << 30;
using pii = pair<int, int>;
auto dijkstra = [&](int i) {
vector<int> dist(n, inf);
dist[i] = 0;
priority_queue<pii, vector<pii>, greater<pii>> q;
q.emplace(0, i);
while (!q.empty()) {
auto p = q.top();
q.pop();
i = p.second;
for (int j : g[i]) {
if (dist[j] > dist[i] + 1) {
dist[j] = dist[i] + 1;
q.emplace(dist[j], j);
}
}
}
return dist;
};
vector<int> d1 = dijkstra(node1);
vector<int> d2 = dijkstra(node2);
int ans = -1, d = inf;
for (int i = 0; i < n; ++i) {
int t = max(d1[i], d2[i]);
if (t < d) {
d = t;
ans = i;
}
}
return ans;
}
};
class Solution {
public:
int closestMeetingNode(vector<int>& edges, int node1, int node2) {
int n = edges.size();
vector<vector<int>> g(n);
for (int i = 0; i < n; ++i) {
if (edges[i] != -1) {
g[i].push_back(edges[i]);
}
}
const int inf = 1 << 30;
using pii = pair<int, int>;
auto f = [&](int i) {
vector<int> dist(n, inf);
dist[i] = 0;
queue<int> q{{i}};
while (!q.empty()) {
i = q.front();
q.pop();
for (int j : g[i]) {
if (dist[j] == inf) {
dist[j] = dist[i] + 1;
q.push(j);
}
}
}
return dist;
};
vector<int> d1 = f(node1);
vector<int> d2 = f(node2);
int ans = -1, d = inf;
for (int i = 0; i < n; ++i) {
int t = max(d1[i], d2[i]);
if (t < d) {
d = t;
ans = i;
}
}
return ans;
}
};
func closestMeetingNode(edges []int, node1 int, node2 int) int {
n := len(edges)
g := make([][]int, n)
for i, j := range edges {
if j != -1 {
g[i] = append(g[i], j)
}
}
const inf int = 1 << 30
dijkstra := func(i int) []int {
dist := make([]int, n)
for j := range dist {
dist[j] = inf
}
dist[i] = 0
q := hp{}
heap.Push(&q, pair{0, i})
for len(q) > 0 {
i := heap.Pop(&q).(pair).i
for _, j := range g[i] {
if dist[j] > dist[i]+1 {
dist[j] = dist[i] + 1
heap.Push(&q, pair{dist[j], j})
}
}
}
return dist
}
d1 := dijkstra(node1)
d2 := dijkstra(node2)
ans, d := -1, inf
for i, a := range d1 {
b := d2[i]
t := max(a, b)
if t < d {
d = t
ans = i
}
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type pair struct{ d, i int }
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].d < h[j].d }
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v interface{}) { *h = append(*h, v.(pair)) }
func (h *hp) Pop() interface{} { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
func closestMeetingNode(edges []int, node1 int, node2 int) int {
n := len(edges)
g := make([][]int, n)
for i, j := range edges {
if j != -1 {
g[i] = append(g[i], j)
}
}
const inf int = 1 << 30
f := func(i int) []int {
dist := make([]int, n)
for j := range dist {
dist[j] = inf
}
dist[i] = 0
q := []int{i}
for len(q) > 0 {
i = q[0]
q = q[1:]
for _, j := range g[i] {
if dist[j] == inf {
dist[j] = dist[i] + 1
q = append(q, j)
}
}
}
return dist
}
d1 := f(node1)
d2 := f(node2)
ans, d := -1, inf
for i, a := range d1 {
b := d2[i]
t := max(a, b)
if t < d {
d = t
ans = i
}
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function closestMeetingNode(edges: number[], node1: number, node2: number): number {
const n = edges.length;
const g = Array.from({ length: n }, () => []);
for (let i = 0; i < n; ++i) {
if (edges[i] != -1) {
g[i].push(edges[i]);
}
}
const inf = 1 << 30;
const f = (i: number) => {
const dist = new Array(n).fill(inf);
dist[i] = 0;
const q: number[] = [i];
while (q.length) {
i = q.shift();
for (const j of g[i]) {
if (dist[j] == inf) {
dist[j] = dist[i] + 1;
q.push(j);
}
}
}
return dist;
};
const d1 = f(node1);
const d2 = f(node2);
let ans = -1;
let d = inf;
for (let i = 0; i < n; ++i) {
const t = Math.max(d1[i], d2[i]);
if (t < d) {
d = t;
ans = i;
}
}
return ans;
}