给你一个数组 points
,其中 points[i] = [xi, yi]
,表示第 i
个点在二维平面上的坐标。多个点可能会有 相同 的坐标。
同时给你一个数组 queries
,其中 queries[j] = [xj, yj, rj]
,表示一个圆心在 (xj, yj)
且半径为 rj
的圆。
对于每一个查询 queries[j]
,计算在第 j
个圆 内 点的数目。如果一个点在圆的 边界上 ,我们同样认为它在圆 内 。
请你返回一个数组 answer
,其中 answer[j]
是第 j
个查询的答案。
示例 1:
输入:points = [[1,3],[3,3],[5,3],[2,2]], queries = [[2,3,1],[4,3,1],[1,1,2]] 输出:[3,2,2] 解释:所有的点和圆如上图所示。 queries[0] 是绿色的圆,queries[1] 是红色的圆,queries[2] 是蓝色的圆。
示例 2:
输入:points = [[1,1],[2,2],[3,3],[4,4],[5,5]], queries = [[1,2,2],[2,2,2],[4,3,2],[4,3,3]] 输出:[2,3,2,4] 解释:所有的点和圆如上图所示。 queries[0] 是绿色的圆,queries[1] 是红色的圆,queries[2] 是蓝色的圆,queries[3] 是紫色的圆。
提示:
1 <= points.length <= 500
points[i].length == 2
0 <= xi, yi <= 500
1 <= queries.length <= 500
queries[j].length == 3
0 <= xj, yj <= 500
1 <= rj <= 500
- 所有的坐标都是整数。
方法一:枚举
枚举所有的圆点
时间复杂度 queries
的长度和 points
的长度。忽略答案的空间消耗,空间复杂度
class Solution:
def countPoints(
self, points: List[List[int]], queries: List[List[int]]
) -> List[int]:
ans = []
for x, y, r in queries:
cnt = 0
for i, j in points:
dx, dy = i - x, j - y
cnt += dx * dx + dy * dy <= r * r
ans.append(cnt)
return ans
class Solution {
public int[] countPoints(int[][] points, int[][] queries) {
int m = queries.length;
int[] ans = new int[m];
for (int k = 0; k < m; ++k) {
int x = queries[k][0], y = queries[k][1], r = queries[k][2];
for (var p : points) {
int i = p[0], j = p[1];
int dx = i - x, dy = j - y;
if (dx * dx + dy * dy <= r * r) {
++ans[k];
}
}
}
return ans;
}
}
class Solution {
public:
vector<int> countPoints(vector<vector<int>>& points, vector<vector<int>>& queries) {
vector<int> ans;
for (auto& q : queries) {
int x = q[0], y = q[1], r = q[2];
int cnt = 0;
for (auto& p : points) {
int i = p[0], j = p[1];
int dx = i - x, dy = j - y;
cnt += dx * dx + dy * dy <= r * r;
}
ans.emplace_back(cnt);
}
return ans;
}
};
func countPoints(points [][]int, queries [][]int) (ans []int) {
for _, q := range queries {
x, y, r := q[0], q[1], q[2]
cnt := 0
for _, p := range points {
i, j := p[0], p[1]
dx, dy := i-x, j-y
if dx*dx+dy*dy <= r*r {
cnt++
}
}
ans = append(ans, cnt)
}
return
}
function countPoints(points: number[][], queries: number[][]): number[] {
return queries.map(([cx, cy, r]) => {
let res = 0;
for (const [px, py] of points) {
if (Math.sqrt((cx - px) ** 2 + (cy - py) ** 2) <= r) {
res++;
}
}
return res;
});
}
impl Solution {
pub fn count_points(points: Vec<Vec<i32>>, queries: Vec<Vec<i32>>) -> Vec<i32> {
queries
.iter()
.map(|v| {
let cx = v[0];
let cy = v[1];
let r = v[2].pow(2);
let mut count = 0;
for p in points.iter() {
if ((p[0] - cx).pow(2) + (p[1] - cy).pow(2)) <= r {
count += 1;
}
}
count
})
.collect()
}
}
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* countPoints(int** points, int pointsSize, int* pointsColSize, int** queries, int queriesSize, int* queriesColSize,
int* returnSize) {
int* ans = malloc(sizeof(int) * queriesSize);
for (int i = 0; i < queriesSize; i++) {
int cx = queries[i][0];
int cy = queries[i][1];
int r = queries[i][2];
int count = 0;
for (int j = 0; j < pointsSize; j++) {
if (sqrt(pow(points[j][0] - cx, 2) + pow(points[j][1] - cy, 2)) <= r) {
count++;
}
}
ans[i] = count;
}
*returnSize = queriesSize;
return ans;
}