给定两个人的空闲时间表:slots1
和 slots2
,以及会议的预计持续时间 duration
,请你为他们安排 时间段最早 且合适的会议时间。
如果没有满足要求的会议时间,就请返回一个 空数组。
「空闲时间」的格式是 [start, end]
,由开始时间 start
和结束时间 end
组成,表示从 start
开始,到 end
结束。
题目保证数据有效:同一个人的空闲时间不会出现交叠的情况,也就是说,对于同一个人的两个空闲时间 [start1, end1]
和 [start2, end2]
,要么 start1 > end2
,要么 start2 > end1
。
示例 1:
输入:slots1 = [[10,50],[60,120],[140,210]], slots2 = [[0,15],[60,70]], duration = 8 输出:[60,68]
示例 2:
输入:slots1 = [[10,50],[60,120],[140,210]], slots2 = [[0,15],[60,70]], duration = 12 输出:[]
提示:
1 <= slots1.length, slots2.length <= 104
slots1[i].length, slots2[i].length == 2
slots1[i][0] < slots1[i][1]
slots2[i][0] < slots2[i][1]
0 <= slots1[i][j], slots2[i][j] <= 109
1 <= duration <= 106
方法一:排序 + 双指针
我们可以将两个人的空闲时间分别排序,然后使用双指针遍历两个数组,找到两个人的空闲时间段的交集,如果交集的长度大于等于 duration
,则返回交集的起始时间和起始时间加上 duration
。
时间复杂度
class Solution:
def minAvailableDuration(
self, slots1: List[List[int]], slots2: List[List[int]], duration: int
) -> List[int]:
slots1.sort()
slots2.sort()
m, n = len(slots1), len(slots2)
i = j = 0
while i < m and j < n:
start = max(slots1[i][0], slots2[j][0])
end = min(slots1[i][1], slots2[j][1])
if end - start >= duration:
return [start, start + duration]
if slots1[i][1] < slots2[j][1]:
i += 1
else:
j += 1
return []
class Solution {
public List<Integer> minAvailableDuration(int[][] slots1, int[][] slots2, int duration) {
Arrays.sort(slots1, (a, b) -> a[0] - b[0]);
Arrays.sort(slots2, (a, b) -> a[0] - b[0]);
int m = slots1.length, n = slots2.length;
int i = 0, j = 0;
while (i < m && j < n) {
int start = Math.max(slots1[i][0], slots2[j][0]);
int end = Math.min(slots1[i][1], slots2[j][1]);
if (end - start >= duration) {
return Arrays.asList(start, start + duration);
}
if (slots1[i][1] < slots2[j][1]) {
++i;
} else {
++j;
}
}
return Collections.emptyList();
}
}
class Solution {
public:
vector<int> minAvailableDuration(vector<vector<int>>& slots1, vector<vector<int>>& slots2, int duration) {
sort(slots1.begin(), slots1.end());
sort(slots2.begin(), slots2.end());
int m = slots1.size(), n = slots2.size();
int i = 0, j = 0;
while (i < m && j < n) {
int start = max(slots1[i][0], slots2[j][0]);
int end = min(slots1[i][1], slots2[j][1]);
if (end - start >= duration) {
return {start, start + duration};
}
if (slots1[i][1] < slots2[j][1]) {
++i;
} else {
++j;
}
}
return {};
}
};
impl Solution {
#[allow(dead_code)]
pub fn min_available_duration(slots1: Vec<Vec<i32>>, slots2: Vec<Vec<i32>>, duration: i32) -> Vec<i32> {
let mut slots1 = slots1;
let mut slots2 = slots2;
// First sort the two vectors based on the beginning time
slots1.sort_by(|lhs, rhs| {
lhs[0].cmp(&rhs[0])
});
slots2.sort_by(|lhs, rhs| {
lhs[0].cmp(&rhs[0])
});
// Then traverse the two vector
let mut i: usize = 0;
let mut j: usize = 0;
let N = slots1.len();
let M = slots2.len();
while i < N && j < M {
let (start, end) = (slots1[i][0], slots1[i][1]);
while j < M && slots2[j][0] < end {
// If still in the scope
let (cur_x, cur_y) =
(std::cmp::max(start, slots2[j][0]), std::cmp::min(end, slots2[j][1]));
if cur_y - cur_x >= duration {
return vec![cur_x, cur_x + duration];
}
// Otherwise, keep iterating
if slots1[i][1] < slots2[j][1] {
// Update i then
break;
}
j += 1;
}
i += 1;
}
// The default is an empty vector
vec![]
}
}
func minAvailableDuration(slots1 [][]int, slots2 [][]int, duration int) []int {
sort.Slice(slots1, func(i, j int) bool { return slots1[i][0] < slots1[j][0] })
sort.Slice(slots2, func(i, j int) bool { return slots2[i][0] < slots2[j][0] })
i, j, m, n := 0, 0, len(slots1), len(slots2)
for i < m && j < n {
start := max(slots1[i][0], slots2[j][0])
end := min(slots1[i][1], slots2[j][1])
if end-start >= duration {
return []int{start, start + duration}
}
if slots1[i][1] < slots2[j][1] {
i++
} else {
j++
}
}
return []int{}
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}