Given an integer array arr
and an integer k
, modify the array by repeating it k
times.
For example, if arr = [1, 2]
and k = 3
then the modified array will be [1, 2, 1, 2, 1, 2]
.
Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0
and its sum in that case is 0
.
As the answer can be very large, return the answer modulo 109 + 7
.
Example 1:
Input: arr = [1,2], k = 3 Output: 9
Example 2:
Input: arr = [1,-2,1], k = 5 Output: 2
Example 3:
Input: arr = [-1,-2], k = 7 Output: 0
Constraints:
1 <= arr.length <= 105
1 <= k <= 105
-104 <= arr[i] <= 104
class Solution:
def kConcatenationMaxSum(self, arr: List[int], k: int) -> int:
s = mx_pre = mi_pre = mx_sub = 0
for x in arr:
s += x
mx_pre = max(mx_pre, s)
mi_pre = min(mi_pre, s)
mx_sub = max(mx_sub, s - mi_pre)
ans = mx_sub
mod = 10**9 + 7
if k == 1:
return ans % mod
mx_suf = s - mi_pre
ans = max(ans, mx_pre + mx_suf)
if s > 0:
ans = max(ans, (k - 2) * s + mx_pre + mx_suf)
return ans % mod
class Solution {
public int kConcatenationMaxSum(int[] arr, int k) {
long s = 0, mxPre = 0, miPre = 0, mxSub = 0;
for (int x : arr) {
s += x;
mxPre = Math.max(mxPre, s);
miPre = Math.min(miPre, s);
mxSub = Math.max(mxSub, s - miPre);
}
long ans = mxSub;
final int mod = (int) 1e9 + 7;
if (k == 1) {
return (int) (ans % mod);
}
long mxSuf = s - miPre;
ans = Math.max(ans, mxPre + mxSuf);
if (s > 0) {
ans = Math.max(ans, (k - 2) * s + mxPre + mxSuf);
}
return (int) (ans % mod);
}
}
class Solution {
public:
int kConcatenationMaxSum(vector<int>& arr, int k) {
long s = 0, mxPre = 0, miPre = 0, mxSub = 0;
for (int x : arr) {
s += x;
mxPre = max(mxPre, s);
miPre = min(miPre, s);
mxSub = max(mxSub, s - miPre);
}
long ans = mxSub;
const int mod = 1e9 + 7;
if (k == 1) {
return ans % mod;
}
long mxSuf = s - miPre;
ans = max(ans, mxPre + mxSuf);
if (s > 0) {
ans = max(ans, mxPre + (k - 2) * s + mxSuf);
}
return ans % mod;
}
};
func kConcatenationMaxSum(arr []int, k int) int {
var s, mxPre, miPre, mxSub int
for _, x := range arr {
s += x
mxPre = max(mxPre, s)
miPre = min(miPre, s)
mxSub = max(mxSub, s-miPre)
}
const mod = 1e9 + 7
ans := mxSub
if k == 1 {
return ans % mod
}
mxSuf := s - miPre
ans = max(ans, mxSuf+mxPre)
if s > 0 {
ans = max(ans, mxSuf+(k-2)*s+mxPre)
}
return ans % mod
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}