Skip to content

Latest commit

 

History

History
304 lines (272 loc) · 8.14 KB

File metadata and controls

304 lines (272 loc) · 8.14 KB

中文文档

Description

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,
  • 1 representing a fresh orange, or
  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

 

Example 1:

Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:

Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:

Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 10
  • grid[i][j] is 0, 1, or 2.

Solutions

Python3

class Solution:
    def orangesRotting(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        q = deque()
        cnt = 0
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 2:
                    q.append((i, j))
                elif grid[i][j] == 1:
                    cnt += 1
        ans = 0
        while q and cnt:
            ans += 1
            for _ in range(len(q)):
                i, j = q.popleft()
                for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
                        cnt -= 1
                        grid[x][y] = 2
                        q.append((x, y))
        return ans if cnt == 0 else -1

Java

class Solution {
    public int orangesRotting(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int cnt = 0;
        Deque<int[]> q = new LinkedList<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 2) {
                    q.offer(new int[] {i, j});
                } else if (grid[i][j] == 1) {
                    ++cnt;
                }
            }
        }
        int ans = 0;
        int[] dirs = {1, 0, -1, 0, 1};
        while (!q.isEmpty() && cnt > 0) {
            ++ans;
            for (int i = q.size(); i > 0; --i) {
                int[] p = q.poll();
                for (int j = 0; j < 4; ++j) {
                    int x = p[0] + dirs[j];
                    int y = p[1] + dirs[j + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                        grid[x][y] = 2;
                        --cnt;
                        q.offer(new int[] {x, y});
                    }
                }
            }
        }
        return cnt > 0 ? -1 : ans;
    }
}

C++

class Solution {
public:
    int orangesRotting(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        int cnt = 0;
        typedef pair<int, int> pii;
        queue<pii> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 2)
                    q.emplace(i, j);
                else if (grid[i][j] == 1)
                    ++cnt;
            }
        }
        int ans = 0;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (!q.empty() && cnt > 0) {
            ++ans;
            for (int i = q.size(); i > 0; --i) {
                auto p = q.front();
                q.pop();
                for (int j = 0; j < 4; ++j) {
                    int x = p.first + dirs[j];
                    int y = p.second + dirs[j + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                        --cnt;
                        grid[x][y] = 2;
                        q.emplace(x, y);
                    }
                }
            }
        }
        return cnt > 0 ? -1 : ans;
    }
};

Go

func orangesRotting(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	cnt := 0
	var q [][]int
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if grid[i][j] == 2 {
				q = append(q, []int{i, j})
			} else if grid[i][j] == 1 {
				cnt++
			}
		}
	}
	ans := 0
	dirs := []int{-1, 0, 1, 0, -1}
	for len(q) > 0 && cnt > 0 {
		ans++
		for i := len(q); i > 0; i-- {
			p := q[0]
			q = q[1:]
			for j := 0; j < 4; j++ {
				x, y := p[0]+dirs[j], p[1]+dirs[j+1]
				if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 {
					cnt--
					grid[x][y] = 2
					q = append(q, []int{x, y})
				}
			}
		}
	}
	if cnt > 0 {
		return -1
	}
	return ans
}

TypeScript

function orangesRotting(grid: number[][]): number {
    const m = grid.length;
    const n = grid[0].length;
    let count = 0;
    const queue = [];
    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            if (grid[i][j] === 1) {
                count++;
            } else if (grid[i][j] === 2) {
                queue.push([i, j]);
            }
        }
    }
    let res = 0;
    const dris = [1, 0, -1, 0, 1];
    while (count !== 0 && queue.length !== 0) {
        for (let i = queue.length; i > 0; i--) {
            const [x, y] = queue.shift();
            for (let j = 0; j < 4; j++) {
                const newX = x + dris[j];
                const newY = y + dris[j + 1];
                if (newX >= 0 && newX < m && newY >= 0 && newY <= n && grid[newX][newY] === 1) {
                    grid[newX][newY] = 2;
                    queue.push([newX, newY]);
                    count--;
                }
            }
        }
        res++;
    }
    if (count != 0) {
        return -1;
    }
    return res;
}

Rust

use std::collections::VecDeque;

impl Solution {
    pub fn oranges_rotting(mut grid: Vec<Vec<i32>>) -> i32 {
        let mut queue = VecDeque::new();
        let m = grid.len();
        let n = grid[0].len();
        let mut count = 0;
        for i in 0..m {
            for j in 0..n {
                match grid[i][j] {
                    1 => count += 1,
                    2 => queue.push_back([i as i32, j as i32]),
                    _ => (),
                }
            }
        }
        let mut res = 0;
        let dirs = [1, 0, -1, 0, 1];
        while count != 0 && queue.len() != 0 {
            let mut len = queue.len();
            while len != 0 {
                let [x, y] = queue.pop_front().unwrap();
                for i in 0..4 {
                    let new_x = x + dirs[i];
                    let new_y = y + dirs[i + 1];
                    if new_x >= 0
                        && new_x < m as i32
                        && new_y >= 0
                        && new_y < n as i32
                        && grid[new_x as usize][new_y as usize] == 1
                    {
                        grid[new_x as usize][new_y as usize] = 2;
                        queue.push_back([new_x, new_y]);
                        count -= 1;
                    }
                }
                len -= 1;
            }
            res += 1;
        }
        if count != 0 {
            return -1;
        }
        res
    }
}

...