你正在安装一个广告牌,并希望它高度最大。这块广告牌将有两个钢制支架,两边各一个。每个钢支架的高度必须相等。
你有一堆可以焊接在一起的钢筋 rods
。举个例子,如果钢筋的长度为 1
、2
和 3
,则可以将它们焊接在一起形成长度为 6
的支架。
返回 广告牌的最大可能安装高度 。如果没法安装广告牌,请返回 0
。
示例 1:
输入:[1,2,3,6] 输出:6 解释:我们有两个不相交的子集 {1,2,3} 和 {6},它们具有相同的和 sum = 6。
示例 2:
输入:[1,2,3,4,5,6] 输出:10 解释:我们有两个不相交的子集 {2,3,5} 和 {4,6},它们具有相同的和 sum = 10。
示例 3:
输入:[1,2] 输出:0 解释:没法安装广告牌,所以返回 0。
提示:
0 <= rods.length <= 20
1 <= rods[i] <= 1000
sum(rods[i]) <= 5000
方法一:记忆化搜索
我们设计一个函数
函数
如果
如果
- 不选择第
$i$ 根钢筋,此时$dfs(i, j) = dfs(i+1, j)$ ; - 选择第
$i$ 根钢筋,并且放置在原本高度较高的一边,那么$dfs(i, j) = dfs(i+1, j+rods[i])$ ; - 选择第
$i$ 根钢筋,并且放置在高度较低的一边,此时共同高度增加了$\min(j, rods[i])$ ,那么$dfs(i, j) = dfs(i+1, |rods[i]-j|) + \min(j, rods[i])$ 。
我们取这三种情况下的最大值,即可得到
为了避免重复计算,我们使用一个二维数组
时间复杂度
方法二:动态规划
我们定义
对于第
- 放置在原本高度较高的一边,即满足
$j \geq rods[i-1]$ ,此时$f[i][j] = max(f[i][j], f[i-1][j-rods[i-1]])$ ; - 放置在原本高度较低的一遍,如果满足
$j + rods[i-1] \leq s$ ,此时$f[i][j] = max(f[i][j], f[i-1][j+rods[i-1]] + rods[i-1])$ ;如果满足$j \lt rods[i-1]$ ,此时$f[i][j] = max(f[i][j], f[i-1][rods[i-1]-j] + rods[i-1]-j)$ 。
综上,我们可以得到状态转移方程:
最终答案即为
时间复杂度
class Solution:
def tallestBillboard(self, rods: List[int]) -> int:
@cache
def dfs(i: int, j: int) -> int:
if i >= len(rods):
return 0 if j == 0 else -inf
ans = max(dfs(i + 1, j), dfs(i + 1, j + rods[i]))
ans = max(ans, dfs(i + 1, abs(rods[i] - j)) + min(j, rods[i]))
return ans
return dfs(0, 0)
class Solution:
def tallestBillboard(self, rods: List[int]) -> int:
n = len(rods)
s = sum(rods)
f = [[-inf] * (s + 1) for _ in range(n + 1)]
f[0][0] = 0
t = 0
for i, x in enumerate(rods, 1):
t += x
for j in range(t + 1):
f[i][j] = f[i - 1][j]
if j >= x:
f[i][j] = max(f[i][j], f[i - 1][j - x])
if j + x <= t:
f[i][j] = max(f[i][j], f[i - 1][j + x] + x)
if j < x:
f[i][j] = max(f[i][j], f[i - 1][x - j] + x - j)
return f[n][0]
class Solution {
private Integer[][] f;
private int[] rods;
private int n;
public int tallestBillboard(int[] rods) {
int s = 0;
for (int x : rods) {
s += x;
}
n = rods.length;
this.rods = rods;
f = new Integer[n][s + 1];
return dfs(0, 0);
}
private int dfs(int i, int j) {
if (i >= n) {
return j == 0 ? 0 : -(1 << 30);
}
if (f[i][j] != null) {
return f[i][j];
}
int ans = Math.max(dfs(i + 1, j), dfs(i + 1, j + rods[i]));
ans = Math.max(ans, dfs(i + 1, Math.abs(rods[i] - j)) + Math.min(j, rods[i]));
return f[i][j] = ans;
}
}
class Solution {
public int tallestBillboard(int[] rods) {
int n = rods.length;
int s = 0;
for (int x : rods) {
s += x;
}
int[][] f = new int[n + 1][s + 1];
for (var e : f) {
Arrays.fill(e, -(1 << 30));
}
f[0][0] = 0;
for (int i = 1, t = 0; i <= n; ++i) {
int x = rods[i - 1];
t += x;
for (int j = 0; j <= t; ++j) {
f[i][j] = f[i - 1][j];
if (j >= x) {
f[i][j] = Math.max(f[i][j], f[i - 1][j - x]);
}
if (j + x <= t) {
f[i][j] = Math.max(f[i][j], f[i - 1][j + x] + x);
}
if (j < x) {
f[i][j] = Math.max(f[i][j], f[i - 1][x - j] + x - j);
}
}
}
return f[n][0];
}
}
class Solution {
public:
int tallestBillboard(vector<int>& rods) {
int s = accumulate(rods.begin(), rods.end(), 0);
int n = rods.size();
int f[n][s + 1];
memset(f, -1, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) -> int {
if (i >= n) {
return j == 0 ? 0 : -(1 << 30);
}
if (f[i][j] != -1) {
return f[i][j];
}
int ans = max(dfs(i + 1, j), dfs(i + 1, j + rods[i]));
ans = max(ans, dfs(i + 1, abs(j - rods[i])) + min(j, rods[i]));
return f[i][j] = ans;
};
return dfs(0, 0);
}
};
class Solution {
public:
int tallestBillboard(vector<int>& rods) {
int n = rods.size();
int s = accumulate(rods.begin(), rods.end(), 0);
int f[n + 1][s + 1];
memset(f, -0x3f, sizeof(f));
f[0][0] = 0;
for (int i = 1, t = 0; i <= n; ++i) {
int x = rods[i - 1];
t += x;
for (int j = 0; j <= t; ++j) {
f[i][j] = f[i - 1][j];
if (j >= x) {
f[i][j] = max(f[i][j], f[i - 1][j - x]);
}
if (j + x <= t) {
f[i][j] = max(f[i][j], f[i - 1][j + x] + x);
}
if (j < x) {
f[i][j] = max(f[i][j], f[i - 1][x - j] + x - j);
}
}
}
return f[n][0];
}
};
func tallestBillboard(rods []int) int {
s := 0
for _, x := range rods {
s += x
}
n := len(rods)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, s+1)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= n {
if j == 0 {
return 0
}
return -(1 << 30)
}
if f[i][j] != -1 {
return f[i][j]
}
ans := max(dfs(i+1, j), dfs(i+1, j+rods[i]))
ans = max(ans, dfs(i+1, abs(j-rods[i]))+min(j, rods[i]))
f[i][j] = ans
return ans
}
return dfs(0, 0)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func tallestBillboard(rods []int) int {
n := len(rods)
s := 0
for _, x := range rods {
s += x
}
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, s+1)
for j := range f[i] {
f[i][j] = -(1 << 30)
}
}
f[0][0] = 0
for i, t := 1, 0; i <= n; i++ {
x := rods[i-1]
t += x
for j := 0; j <= t; j++ {
f[i][j] = f[i-1][j]
if j >= x {
f[i][j] = max(f[i][j], f[i-1][j-x])
}
if j+x <= t {
f[i][j] = max(f[i][j], f[i-1][j+x]+x)
}
if j < x {
f[i][j] = max(f[i][j], f[i-1][x-j]+x-j)
}
}
}
return f[n][0]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function tallestBillboard(rods: number[]): number {
const s = rods.reduce((a, b) => a + b, 0);
const n = rods.length;
const f = new Array(n).fill(0).map(() => new Array(s + 1).fill(-1));
const dfs = (i: number, j: number): number => {
if (i >= n) {
return j === 0 ? 0 : -(1 << 30);
}
if (f[i][j] !== -1) {
return f[i][j];
}
let ans = Math.max(dfs(i + 1, j), dfs(i + 1, j + rods[i]));
ans = Math.max(ans, dfs(i + 1, Math.abs(j - rods[i])) + Math.min(j, rods[i]));
return (f[i][j] = ans);
};
return dfs(0, 0);
}