Skip to content

Latest commit

 

History

History
181 lines (143 loc) · 5.13 KB

File metadata and controls

181 lines (143 loc) · 5.13 KB

English Version

题目描述

我们可以为二叉树 T 定义一个 翻转操作 ,如下所示:选择任意节点,然后交换它的左子树和右子树。

只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转 等价 于二叉树 Y

这些树由根节点 root1root2 给出。如果两个二叉树是否是翻转 等价 的函数,则返回 true ,否则返回 false

 

示例 1:

Flipped Trees Diagram

输入:root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
输出:true
解释:我们翻转值为 1,3 以及 5 的三个节点。

示例 2:

输入: root1 = [], root2 = []
输出: true

示例 3:

输入: root1 = [], root2 = [1]
输出: false

 

提示:

  • 每棵树节点数在 [0, 100] 范围内
  • 每棵树中的每个值都是唯一的、在 [0, 99] 范围内的整数

解法

DFS。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
        def dfs(root1, root2):
            if root1 == root2 or (root1 is None and root2 is None):
                return True
            if root1 is None or root2 is None or root1.val != root2.val:
                return False
            return (dfs(root1.left, root2.left) and dfs(root1.right, root2.right)) or (
                dfs(root1.left, root2.right) and dfs(root1.right, root2.left)
            )

        return dfs(root1, root2)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean flipEquiv(TreeNode root1, TreeNode root2) {
        return dfs(root1, root2);
    }

    private boolean dfs(TreeNode root1, TreeNode root2) {
        if (root1 == root2 || (root1 == null && root2 == null)) {
            return true;
        }
        if (root1 == null || root2 == null || root1.val != root2.val) {
            return false;
        }
        return (dfs(root1.left, root2.left) && dfs(root1.right, root2.right))
            || (dfs(root1.left, root2.right) && dfs(root1.right, root2.left));
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool flipEquiv(TreeNode* root1, TreeNode* root2) {
        return dfs(root1, root2);
    }

    bool dfs(TreeNode* root1, TreeNode* root2) {
        if (root1 == root2 || (!root1 && !root2)) return true;
        if (!root1 || !root2 || root1->val != root2->val) return false;
        return (dfs(root1->left, root2->left) && dfs(root1->right, root2->right)) || (dfs(root1->left, root2->right) && dfs(root1->right, root2->left));
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func flipEquiv(root1 *TreeNode, root2 *TreeNode) bool {
	var dfs func(root1, root2 *TreeNode) bool
	dfs = func(root1, root2 *TreeNode) bool {
		if root1 == root2 || (root1 == nil && root2 == nil) {
			return true
		}
		if root1 == nil || root2 == nil || root1.Val != root2.Val {
			return false
		}
		return (dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)) || (dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left))
	}
	return dfs(root1, root2)
}

...