给定一个二叉树(具有根结点 root
), 一个目标结点 target
,和一个整数值 k
。
返回到目标结点 target
距离为 k
的所有结点的值的列表。 答案可以以 任何顺序 返回。
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, k = 2 输出:[7,4,1] 解释:所求结点为与目标结点(值为 5)距离为 2 的结点,值分别为 7,4,以及 1
示例 2:
输入: root = [1], target = 1, k = 3 输出: []
提示:
- 节点数在
[1, 500]
范围内 0 <= Node.val <= 500
Node.val
中所有值 不同- 目标结点
target
是树上的结点。 0 <= k <= 1000
方法一:DFS + 哈希表
我们先用 DFS 遍历整棵树,记录每个结点的父结点,然后从目标结点开始,向上、向下分别搜索距离为
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
def parents(root, prev):
nonlocal p
if root is None:
return
p[root] = prev
parents(root.left, root)
parents(root.right, root)
def dfs(root, k):
nonlocal ans, vis
if root is None or root.val in vis:
return
vis.add(root.val)
if k == 0:
ans.append(root.val)
return
dfs(root.left, k - 1)
dfs(root.right, k - 1)
dfs(p[root], k - 1)
p = {}
parents(root, None)
ans = []
vis = set()
dfs(target, k)
return ans
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
def dfs1(root, fa):
if root is None:
return
p[root] = fa
dfs1(root.left, root)
dfs1(root.right, root)
def dfs2(root, fa, k):
if root is None:
return
if k == 0:
ans.append(root.val)
return
for nxt in (root.left, root.right, p[root]):
if nxt != fa:
dfs2(nxt, root, k - 1)
p = {}
dfs1(root, None)
ans = []
dfs2(target, None, k)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private Map<TreeNode, TreeNode> p;
private Set<Integer> vis;
private List<Integer> ans;
public List<Integer> distanceK(TreeNode root, TreeNode target, int k) {
p = new HashMap<>();
vis = new HashSet<>();
ans = new ArrayList<>();
parents(root, null);
dfs(target, k);
return ans;
}
private void parents(TreeNode root, TreeNode prev) {
if (root == null) {
return;
}
p.put(root, prev);
parents(root.left, root);
parents(root.right, root);
}
private void dfs(TreeNode root, int k) {
if (root == null || vis.contains(root.val)) {
return;
}
vis.add(root.val);
if (k == 0) {
ans.add(root.val);
return;
}
dfs(root.left, k - 1);
dfs(root.right, k - 1);
dfs(p.get(root), k - 1);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<TreeNode*, TreeNode*> p;
unordered_set<int> vis;
vector<int> ans;
vector<int> distanceK(TreeNode* root, TreeNode* target, int k) {
parents(root, nullptr);
dfs(target, k);
return ans;
}
void parents(TreeNode* root, TreeNode* prev) {
if (!root) return;
p[root] = prev;
parents(root->left, root);
parents(root->right, root);
}
void dfs(TreeNode* root, int k) {
if (!root || vis.count(root->val)) return;
vis.insert(root->val);
if (k == 0) {
ans.push_back(root->val);
return;
}
dfs(root->left, k - 1);
dfs(root->right, k - 1);
dfs(p[root], k - 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func distanceK(root *TreeNode, target *TreeNode, k int) []int {
p := make(map[*TreeNode]*TreeNode)
vis := make(map[int]bool)
var ans []int
var parents func(root, prev *TreeNode)
parents = func(root, prev *TreeNode) {
if root == nil {
return
}
p[root] = prev
parents(root.Left, root)
parents(root.Right, root)
}
parents(root, nil)
var dfs func(root *TreeNode, k int)
dfs = func(root *TreeNode, k int) {
if root == nil || vis[root.Val] {
return
}
vis[root.Val] = true
if k == 0 {
ans = append(ans, root.Val)
return
}
dfs(root.Left, k-1)
dfs(root.Right, k-1)
dfs(p[root], k-1)
}
dfs(target, k)
return ans
}