完全二叉树是每一层(除最后一层外)都是完全填充(即,节点数达到最大,第 n
层有 2n-1
个节点)的,并且所有的节点都尽可能地集中在左侧。
设计一个用完全二叉树初始化的数据结构 CBTInserter
,它支持以下几种操作:
CBTInserter(TreeNode root)
使用根节点为root
的给定树初始化该数据结构;CBTInserter.insert(int v)
向树中插入一个新节点,节点类型为TreeNode
,值为v
。使树保持完全二叉树的状态,并返回插入的新节点的父节点的值;CBTInserter.get_root()
将返回树的根节点。
示例 1:
输入:inputs = ["CBTInserter","insert","get_root"], inputs = [[[1]],[2],[]] 输出:[null,1,[1,2]]
示例 2:
输入:inputs = ["CBTInserter","insert","insert","get_root"], inputs = [[[1,2,3,4,5,6]],[7],[8],[]] 输出:[null,3,4,[1,2,3,4,5,6,7,8]]
提示:
- 最初给定的树是完全二叉树,且包含
1
到1000
个节点。 - 每个测试用例最多调用
CBTInserter.insert
操作10000
次。 - 给定节点或插入节点的每个值都在
0
到5000
之间。
注意:本题与主站 919 题相同: https://leetcode.cn/problems/complete-binary-tree-inserter/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class CBTInserter:
def __init__(self, root: TreeNode):
self.tree = []
q = deque([root])
while q:
for _ in range(len(q)):
node = q.popleft()
self.tree.append(node)
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
def insert(self, v: int) -> int:
pid = (len(self.tree) - 1) >> 1
node = TreeNode(v)
self.tree.append(node)
p = self.tree[pid]
if p.left is None:
p.left = node
else:
p.right = node
return p.val
def get_root(self) -> TreeNode:
return self.tree[0]
# Your CBTInserter object will be instantiated and called as such:
# obj = CBTInserter(root)
# param_1 = obj.insert(v)
# param_2 = obj.get_root()
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class CBTInserter {
private List<TreeNode> tree;
public CBTInserter(TreeNode root) {
tree = new ArrayList<>();
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
TreeNode node = q.pollFirst();
tree.add(node);
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
}
public int insert(int v) {
int pid = (tree.size() - 1) >> 1;
TreeNode node = new TreeNode(v);
tree.add(node);
TreeNode p = tree.get(pid);
if (p.left == null) {
p.left = node;
} else {
p.right = node;
}
return p.val;
}
public TreeNode get_root() {
return tree.get(0);
}
}
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter obj = new CBTInserter(root);
* int param_1 = obj.insert(v);
* TreeNode param_2 = obj.get_root();
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class CBTInserter {
public:
vector<TreeNode*> tree;
CBTInserter(TreeNode* root) {
queue<TreeNode*> q{{root}};
while (!q.empty()) {
auto node = q.front();
q.pop();
tree.push_back(node);
if (node->left) q.push(node->left);
if (node->right) q.push(node->right);
}
}
int insert(int v) {
int pid = tree.size() - 1 >> 1;
TreeNode* node = new TreeNode(v);
tree.push_back(node);
TreeNode* p = tree[pid];
if (!p->left)
p->left = node;
else
p->right = node;
return p->val;
}
TreeNode* get_root() {
return tree[0];
}
};
/**
* Your CBTInserter object will be instantiated and called as such:
* CBTInserter* obj = new CBTInserter(root);
* int param_1 = obj->insert(v);
* TreeNode* param_2 = obj->get_root();
*/
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
type CBTInserter struct {
tree []*TreeNode
}
func Constructor(root *TreeNode) CBTInserter {
q := []*TreeNode{root}
tree := []*TreeNode{}
for len(q) > 0 {
node := q[0]
tree = append(tree, node)
q = q[1:]
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
return CBTInserter{tree}
}
func (this *CBTInserter) Insert(v int) int {
pid := (len(this.tree) - 1) >> 1
node := &TreeNode{Val: v}
this.tree = append(this.tree, node)
p := this.tree[pid]
if p.Left == nil {
p.Left = node
} else {
p.Right = node
}
return p.Val
}
func (this *CBTInserter) Get_root() *TreeNode {
return this.tree[0]
}
/**
* Your CBTInserter object will be instantiated and called as such:
* obj := Constructor(root);
* param_1 := obj.Insert(v);
* param_2 := obj.Get_root();
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
*/
var CBTInserter = function (root) {
this.tree = [];
const q = [root];
while (q.length) {
const node = q.shift();
this.tree.push(node);
if (node.left) {
q.push(node.left);
}
if (node.right) {
q.push(node.right);
}
}
};
/**
* @param {number} v
* @return {number}
*/
CBTInserter.prototype.insert = function (v) {
const pid = (this.tree.length - 1) >> 1;
const node = new TreeNode(v);
this.tree.push(node);
const p = this.tree[pid];
if (!p.left) {
p.left = node;
} else {
p.right = node;
}
return p.val;
};
/**
* @return {TreeNode}
*/
CBTInserter.prototype.get_root = function () {
return this.tree[0];
};
/**
* Your CBTInserter object will be instantiated and called as such:
* var obj = new CBTInserter(root)
* var param_1 = obj.insert(v)
* var param_2 = obj.get_root()
*/