Skip to content

liorsbg/rq

 
 

Repository files navigation

RQ (Redis Queue) is a simple Python library for queueing jobs and processing them in the background with workers. It is backed by Redis and it is designed to have a low barrier to entry. It should be integrated in your web stack easily.

RQ requires Redis >= 2.7.0.

Build status Downloads Can I Use Python 3? Coverage Status

Full documentation can be found here.

Getting started

First, run a Redis server, of course:

$ redis-server

To put jobs on queues, you don't have to do anything special, just define your typically lengthy or blocking function:

import requests

def count_words_at_url(url):
    """Just an example function that's called async."""
    resp = requests.get(url)
    return len(resp.text.split())

You do use the excellent requests package, don't you?

Then, create an RQ queue:

from rq import Queue, use_connection
use_connection()
q = Queue()

And enqueue the function call:

from my_module import count_words_at_url
result = q.enqueue(count_words_at_url, 'http://nvie.com')

For a more complete example, refer to the docs. But this is the essence.

The worker

To start executing enqueued function calls in the background, start a worker from your project's directory:

$ rqworker
*** Listening for work on default
Got count_words_at_url('http://nvie.com') from default
Job result = 818
*** Listening for work on default

That's about it.

Installation

Simply use the following command to install the latest released version:

pip install rq

If you want the cutting edge version (that may well be broken), use this:

pip install -e [email protected]:nvie/rq.git@master#egg=rq

Project history

This project has been inspired by the good parts of Celery, Resque and this snippet, and has been created as a lightweight alternative to the heaviness of Celery or other AMQP-based queueing implementations.

About

Simple job queues for Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.5%
  • Other 0.5%