forked from VowpalWabbit/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_args.cc
542 lines (478 loc) · 19.7 KB
/
parse_args.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
Copyright (c) 2009 Yahoo! Inc. All rights reserved. The copyrights
embodied in the content of this file are licensed under the BSD
(revised) open source license
*/
#include <stdio.h>
#include <float.h>
#include "cache.h"
#include "io.h"
#include "parse_regressor.h"
#include "parser.h"
#include "parse_args.h"
#include "sender.h"
#include "network.h"
#include "global_data.h"
using namespace std;
//
// Does string end with a certain substring?
//
bool ends_with(string const &fullString, string const &ending)
{
if (fullString.length() > ending.length()) {
return (fullString.compare(fullString.length() - ending.length(), ending.length(), ending) == 0);
} else {
return false;
}
}
size_t next_pow2(size_t x) {
int i = 0;
x = x > 0 ? x - 1 : 0;
while (x > 0) {
x >>= 1;
i++;
}
return 1 << i;
}
const float default_decay = 1.;
po::variables_map parse_args(int argc, char *argv[], boost::program_options::options_description& desc,
gd_vars& vars,
regressor &r, parser* par,
string& final_regressor_name)
{
vars.init();
global.program_name = argv[0];
global.sd = (shared_data *) malloc(sizeof(shared_data));
// Declare the supported options.
desc.add_options()
("active_learning", "active learning mode")
("active_simulation", "active learning simulation mode")
("active_mellowness", po::value<float>(&global.active_c0)->default_value(8.f), "active learning mellowness parameter c_0. Default 8")
("adaptive", "use adaptive, individual learning rates.")
("exact_adaptive_norm", "use a more expensive exact norm for adaptive learning rates.")
("audit,a", "print weights of features")
("bit_precision,b", po::value<size_t>(),
"number of bits in the feature table")
("backprop", "turn on delayed backprop")
("bfgs", "use bfgs optimization")
("cache,c", "Use a cache. The default is <data>.cache")
("cache_file", po::value< vector<string> >(), "The location(s) of cache_file.")
("compressed", "use gzip format whenever appropriate. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported if this option is on")
("conjugate_gradient", "use conjugate gradient based optimization")
("nonormalize", "Do not normalize online updates")
("l1", po::value<float>(&global.l1_lambda)->default_value(0.0), "l_1 lambda")
("l2", po::value<float>(&global.l2_lambda)->default_value(0.0), "l_2 lambda")
("corrective", "turn on corrective updates")
("data,d", po::value< string >()->default_value(""), "Example Set")
("daemon", "persistent daemon mode on port 26542")
("num_children", po::value<size_t>(&global.num_children)->default_value(10), "number of children for persistent daemon mode")
("pid_file", po::value< string >(), "Write pid file in persistent daemon mode")
("decay_learning_rate", po::value<float>(&global.eta_decay_rate)->default_value(default_decay),
"Set Decay factor for learning_rate between passes")
("input_feature_regularizer", po::value< string >(&global.per_feature_regularizer_input), "Per feature regularization input file")
("final_regressor,f", po::value< string >(), "Final regressor")
("readable_model", po::value< string >(), "Output human-readable final regressor")
("global_multiplier", po::value<float>(&global.global_multiplier)->default_value(1.0), "Global update multiplier")
("delayed_global", "Do delayed global updates")
("hash", po::value< string > (), "how to hash the features. Available options: strings, all")
("help,h","Output Arguments")
("hessian_on", "use second derivative in line search")
("version","Version information")
("ignore", po::value< vector<unsigned char> >(), "ignore namespaces beginning with character <arg>")
("initial_weight", po::value<float>(&global.initial_weight)->default_value(0.), "Set all weights to an initial value of 1.")
("initial_regressor,i", po::value< vector<string> >(), "Initial regressor(s)")
("initial_pass_length", po::value<size_t>(&global.pass_length)->default_value((size_t)-1), "initial number of examples per pass")
("initial_t", po::value<double>(&(global.sd->t))->default_value(1.), "initial t value")
("lda", po::value<size_t>(&global.lda), "Run lda with <int> topics")
("lda_alpha", po::value<float>(&global.lda_alpha)->default_value(0.1), "Prior on sparsity of per-document topic weights")
("lda_rho", po::value<float>(&global.lda_rho)->default_value(0.1), "Prior on sparsity of topic distributions")
("lda_D", po::value<float>(&global.lda_D)->default_value(10000.), "Number of documents")
("minibatch", po::value<size_t>(&global.minibatch)->default_value(1), "Minibatch size, for LDA")
("span_server", po::value<string>(&global.span_server)->default_value(""), "Location of server for setting up spanning tree")
("min_prediction", po::value<double>(&global.sd->min_label), "Smallest prediction to output")
("max_prediction", po::value<double>(&global.sd->max_label), "Largest prediction to output")
("mem", po::value<int>(&global.m)->default_value(15), "memory in bfgs")
("multisource", po::value<size_t>(), "multiple sources for daemon input")
("noconstant", "Don't add a constant feature")
("noop","do no learning")
("output_feature_regularizer_binary", po::value< string >(&global.per_feature_regularizer_output), "Per feature regularization output file")
("output_feature_regularizer_text", po::value< string >(&global.per_feature_regularizer_text), "Per feature regularization output file, in text")
("port", po::value<size_t>(),"port to listen on")
("power_t", po::value<float>(&vars.power_t)->default_value(0.5), "t power value")
("predictto", po::value< string > (), "host to send predictions to")
("learning_rate,l", po::value<float>(&global.eta)->default_value(10),
"Set Learning Rate")
("passes", po::value<size_t>(&global.numpasses)->default_value(1),
"Number of Training Passes")
("predictions,p", po::value< string >(), "File to output predictions to")
("quadratic,q", po::value< vector<string> > (),
"Create and use quadratic features")
("quiet", "Don't output diagnostics")
("rank", po::value<size_t>(&global.rank)->default_value(0), "rank for matrix factorization.")
("random_weights", po::value<bool>(&global.random_weights), "make initial weights random")
("raw_predictions,r", po::value< string >(),
"File to output unnormalized predictions to")
("save_per_pass", "Save the model after every pass over data")
("sendto", po::value< vector<string> >(), "send example to <hosts>")
("testonly,t", "Ignore label information and just test")
("thread_bits", po::value<size_t>(&global.thread_bits)->default_value(0), "log_2 threads")
("loss_function", po::value<string>()->default_value("squared"), "Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic and quantile.")
("quantile_tau", po::value<double>()->default_value(0.5), "Parameter \\tau associated with Quantile loss. Defaults to 0.5")
("unique_id", po::value<size_t>(&global.unique_id)->default_value(0),"unique id used for cluster parallel")
("total", po::value<size_t>(&global.total)->default_value(1),"total number of nodes used in cluster parallel")
("node", po::value<size_t>(&global.node)->default_value(0),"node number used for cluster parallel")
("sort_features", "turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes")
("ngram", po::value<size_t>(), "Generate N grams")
("skips", po::value<size_t>(), "Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram.");
global.sd->queries = 0;
global.sd->example_number = 0;
global.sd->weighted_examples = 0.;
global.sd->old_weighted_examples = 0.;
global.sd->weighted_labels = 0.;
global.sd->total_features = 0;
global.sd->sum_loss = 0.0;
global.sd->sum_loss_since_last_dump = 0.0;
global.sd->dump_interval = exp(1.);
global.sd->gravity = 0.;
global.sd->contraction = 1.;
global.sd->min_label = 0.;
global.sd->max_label = 1.;
global.reg_mode = 0;
global.local_example_number = 0;
global.backprop = false;
global.bfgs = false;
global.corrective = false;
global.delayed_global = false;
global.bfgs = false;
global.hessian_on = false;
global.stride = 1;
global.num_bits = 18;
global.default_bits = true;
global.daemon = false;
global.final_prediction_sink.begin = global.final_prediction_sink.end=global.final_prediction_sink.end_array = NULL;
global.raw_prediction = -1;
global.local_prediction = -1;
global.print = print_result;
global.lda = 0;
global.random_weights = false;
global.per_feature_regularizer_input = "";
global.per_feature_regularizer_output = "";
global.per_feature_regularizer_text = "";
global.ring_size = 1 << 8;
global.nonormalize = false;
global.binary_label = false;
global.adaptive = false;
global.add_constant = true;
global.exact_adaptive_norm = false;
global.audit = false;
global.active = false;
global.active_simulation =false;
global.reg = &r;
global.save_per_pass = false;
po::positional_options_description p;
// Be friendly: if -d was left out, treat positional param as data file
p.add("data", -1);
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).
style(po::command_line_style::default_style ^ po::command_line_style::allow_guessing).
options(desc).positional(p).run(), vm);
po::notify(vm);
global.sd->weighted_unlabeled_examples = global.sd->t;
global.initial_t = global.sd->t;
global.partition_bits = global.thread_bits;
if (vm.count("help") || argc == 1) {
/* upon direct query for help -- spit it out to stdout */
cout << "\n" << desc << "\n";
exit(0);
}
if (vm.count("quiet"))
global.quiet = true;
else
global.quiet = false;
if (vm.count("active_simulation"))
global.active_simulation = true;
if (vm.count("active_learning") && !global.active_simulation)
global.active = true;
if (vm.count("adaptive") || vm.count("exact_adaptive_norm")) {
global.adaptive = true;
if (vm.count("exact_adaptive_norm"))
{
global.exact_adaptive_norm = true;
if (vm.count("nonormalize"))
cout << "Options don't make sense. You can't use an exact norm and not normalize." << endl;
}
global.stride = 2;
vars.power_t = 0.0;
if (global.thread_bits != 0)
{
cout << "adaptive code isn't correct with multiple learning cores" << endl;
exit(1);
}
}
if (vm.count("backprop")) {
global.backprop = true;
cout << "enabling backprop updates" << endl;
}
if (vm.count("corrective")) {
global.corrective = true;
cout << "enabling corrective updates" << endl;
}
if (vm.count("delayed_global")) {
global.delayed_global = true;
cout << "enabling delayed_global updates" << endl;
}
if (vm.count("bfgs") || vm.count("conjugate_gradient")) {
global.bfgs = true;
global.stride = 4;
if (vm.count("hessian_on") || global.m==0) {
global.hessian_on = true;
}
if (!global.quiet) {
if (global.m>0)
cerr << "enabling BFGS based optimization ";
else
cerr << "enabling conjugate gradient optimization via BFGS ";
if (global.hessian_on)
cerr << "with curvature calculation" << endl;
else
cerr << "**without** curvature calculation" << endl;
}
if (global.numpasses < 2)
{
cout << "you must make at least 2 passes to use BFGS" << endl;
exit(1);
}
}
if (vm.count("version") || argc == 1) {
/* upon direct query for version -- spit it out to stdout */
cout << version << "\n";
exit(0);
}
if(vm.count("ngram")){
global.ngram = vm["ngram"].as<size_t>();
if(!vm.count("skip_gram")) cerr << "You have chosen to generate " << global.ngram << "-grams" << endl;
if(vm.count("sort_features"))
{
cerr << "ngram is incompatible with sort_features. " << endl;
exit(1);
}
}
if(vm.count("skips"))
{
global.skips = vm["skips"].as<size_t>();
if(!vm.count("ngram"))
{
cout << "You can not skip unless ngram is > 1" << endl;
exit(1);
}
cerr << "You have chosen to generate " << global.skips << "-skip-" << global.ngram << "-grams" << endl;
if(global.skips > 4)
{
cout << "*********************************" << endl;
cout << "Generating these features might take quite some time" << endl;
cout << "*********************************" << endl;
}
}
if (vm.count("bit_precision"))
{
global.default_bits = false;
global.num_bits = vm["bit_precision"].as< size_t>();
if (global.num_bits > 29)
{
cout << "Only 29 or fewer bits allowed. If this is a serious limit, speak up." << endl;
exit(1);
}
}
if (vm.count("daemon") || vm.count("pid_file")) {
global.daemon = true;
// allow each child to process up to 1e5 connections
global.numpasses = (size_t) 1e5;
}
string data_filename = vm["data"].as<string>();
if (vm.count("compressed") || ends_with(data_filename, ".gz"))
set_compressed(par);
if(vm.count("sort_features"))
par->sort_features = true;
if (global.num_bits > 30) {
cerr << "The system limits at 30 bits of precision!\n" << endl;
exit(1);
}
if (vm.count("quadratic"))
{
global.pairs = vm["quadratic"].as< vector<string> >();
if (!global.quiet)
{
cerr << "creating quadratic features for pairs: ";
for (vector<string>::iterator i = global.pairs.begin(); i != global.pairs.end();i++) {
cerr << *i << " ";
if (i->length() > 2)
cerr << endl << "warning, ignoring characters after the 2nd.\n";
if (i->length() < 2) {
cerr << endl << "error, quadratic features must involve two sets.\n";
exit(0);
}
}
cerr << endl;
}
}
for (size_t i = 0; i < 256; i++)
global.ignore[i] = false;
global.ignore_some = false;
if (vm.count("ignore"))
{
vector<unsigned char> ignore = vm["ignore"].as< vector<unsigned char> >();
for (vector<unsigned char>::iterator i = ignore.begin(); i != ignore.end();i++)
{
global.ignore[*i] = true;
global.ignore_some = true;
}
if (!global.quiet)
{
cerr << "ignoring namespaces beginning with: ";
for (vector<unsigned char>::iterator i = ignore.begin(); i != ignore.end();i++)
cerr << *i << " ";
cerr << endl;
}
}
// matrix factorization enabled
if (global.rank > 0) {
// store linear + 2*rank weights per index, round up to power of two
float temp = ceilf(logf((float)(global.rank*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
}
if (vm.count("noconstant"))
global.add_constant = false;
if (vm.count("nonormalize"))
global.nonormalize = true;
if (vm.count("lda"))
{
par->sort_features = true;
float temp = ceilf(logf((float)(global.lda*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
global.add_constant = false;
}
if (vm.count("lda") && global.eta > 1.)
{
cerr << "your learning rate is too high, setting it to 1" << endl;
global.eta = min(global.eta,1.f);
}
if (!vm.count("lda"))
global.eta *= pow(global.sd->t, (double)vars.power_t);
if (vm.count("minibatch")) {
size_t minibatch2 = next_pow2(global.minibatch);
global.ring_size = global.ring_size > minibatch2 ? global.ring_size : minibatch2;
}
parse_regressor_args(vm, r, final_regressor_name, global.quiet);
parse_source_args(vm,par,global.quiet,global.numpasses);
if (vm.count("readable_model"))
global.text_regressor_name = vm["readable_model"].as<string>();
if (vm.count("active_c0"))
global.active_c0 = vm["active_c0"].as<float>();
if (vm.count("save_per_pass"))
global.save_per_pass = true;
if (vm.count("min_prediction"))
global.sd->min_label = vm["min_prediction"].as<double>();
if (vm.count("max_prediction"))
global.sd->max_label = vm["max_prediction"].as<double>();
if (vm.count("min_prediction") || vm.count("max_prediction") || vm.count("testonly"))
set_minmax = noop_mm;
string loss_function;
if(vm.count("loss_function"))
loss_function = vm["loss_function"].as<string>();
else
loss_function = "squaredloss";
double loss_parameter = 0.0;
if(vm.count("quantile_tau"))
loss_parameter = vm["quantile_tau"].as<double>();
if (global.rank != 0) {
loss_function = "classic";
cerr << "Forcing classic squared loss for matrix factorization" << endl;
}
r.loss = getLossFunction(loss_function, loss_parameter);
global.loss = r.loss;
// global.eta *= pow(global.sd->t, vars.power_t);
if (global.eta_decay_rate != default_decay && global.numpasses == 1)
cerr << "Warning: decay_learning_rate has no effect when there is only one pass" << endl;
if (pow((double)global.eta_decay_rate, (double)global.numpasses) < 0.0001 )
cerr << "Warning: the learning rate for the last pass is multiplied by: " << pow((double)global.eta_decay_rate, (double)global.numpasses)
<< " adjust --decay_learning_rate larger to avoid this." << endl;
//parse_source_args(vm,par,global.quiet,global.numpasses);
if (!global.quiet)
{
cerr << "Num weight bits = " << global.num_bits << endl;
cerr << "learning rate = " << global.eta << endl;
cerr << "initial_t = " << global.sd->t << endl;
cerr << "power_t = " << vars.power_t << endl;
if (global.numpasses > 1)
cerr << "decay_learning_rate = " << global.eta_decay_rate << endl;
if (global.rank > 0)
cerr << "rank = " << global.rank << endl;
}
if (vm.count("predictions")) {
if (!global.quiet)
cerr << "predictions = " << vm["predictions"].as< string >() << endl;
if (strcmp(vm["predictions"].as< string >().c_str(), "stdout") == 0)
{
push(global.final_prediction_sink, (size_t) 1);//stdout
}
else
{
const char* fstr = (vm["predictions"].as< string >().c_str());
int f = fileno(fopen(fstr,"w"));
if (f < 0)
cerr << "Error opening the predictions file: " << fstr << endl;
push(global.final_prediction_sink, (size_t) f);
}
}
if (vm.count("raw_predictions")) {
if (!global.quiet)
cerr << "raw predictions = " << vm["raw_predictions"].as< string >() << endl;
if (strcmp(vm["raw_predictions"].as< string >().c_str(), "stdout") == 0)
global.raw_prediction = 1;//stdout
else
global.raw_prediction = fileno(fopen(vm["raw_predictions"].as< string >().c_str(), "w"));
}
if (vm.count("audit"))
global.audit = true;
parse_send_args(vm, global.pairs);
if (vm.count("testonly"))
{
if (!global.quiet)
cerr << "only testing" << endl;
global.training = false;
if (global.lda > 0)
global.eta = 0;
}
else
{
global.training = true;
if (!global.quiet)
cerr << "learning_rate set to " << global.eta << endl;
}
if (vm.count("predictto"))
{
if (!global.quiet)
cerr << "predictto = " << vm["predictto"].as< string >() << endl;
global.local_prediction = open_socket(vm["predictto"].as< string > ().c_str());
}
if (global.l1_lambda < 0.) {
cerr << "l1_lambda should be nonnegative: resetting from " << global.l1_lambda << " to 0" << endl;
global.l1_lambda = 0.;
}
if (global.l2_lambda < 0.) {
cerr << "l2_lambda should be nonnegative: resetting from " << global.l2_lambda << " to 0" << endl;
global.l2_lambda = 0.;
}
global.reg_mode += (global.l1_lambda > 0.) ? 1 : 0;
global.reg_mode += (global.l2_lambda > 0.) ? 2 : 0;
if (!global.quiet)
{
if (global.reg_mode %2)
cerr << "using l1 regularization" << endl;
if (global.reg_mode > 1)
cerr << "using l2 regularization" << endl;
}
return vm;
}