git clone https://github.com/freshman0213/image2mano_params.git
cd images2mano_params
git submodule update --init --recursive
- create conda environment with dependencies:
conda env create -f environment.yml
- activate environment:
conda activate image2mano_params
- install manopth:
cd modified_manopth pip install .
- install mano_pybullet:
cd mano_pybullet pip install -e .
- Download model files from here
wget http://www.di.ens.fr/willow/research/obman/release_models.zip
- unzip
unzip release_models.zip
- Go to MANO website
- Create an account by clicking Sign Up and provide your information
- Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under the MANO license.
- unzip and copy the content of the
models
folder into themisc/mano
folder
- Download the DexYCB dataset here
- Place the file under
misc/
- Extract the .zip file
- Download the example hand images here
- Place the file under
misc/
- Extract the .zip file
image2mano_params/
release_models/
fhb/
obman/
hands_only/
misc/
mano/
MANO_LEFT.pkl
MANO_RIGHT.pkl
dex-ycb/
hand_images/
python get_th_full_pose.py --image_path image_path --hand_side hand_side (--flip) (--th_full_pose_root th_full_pose_root)
python get_pose_m.py --th_full_pose_path th_full_pose_path --hand_side hand_side (--pose_m_path pose_m_path)
The code is adopted from obman_train with only a few modifications.