forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickler.cpp
951 lines (861 loc) · 28.2 KB
/
pickler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
#include <ATen/ATen.h>
#include <ATen/core/Dict.h>
#include <torch/csrc/jit/function.h>
#include <torch/csrc/jit/pickler.h>
#include <string>
namespace torch {
namespace jit {
using ::c10::IValue;
// Protocol 2 is the highest that can be decoded by Python 2
// See https://docs.python.org/3/library/pickle.html#data-stream-format
constexpr static uint8_t PROTOCOL_VERSION = 2;
PicklerClass getClass(const std::string& str) {
if (str == "build_tensor_from_id") {
return PicklerClass::TENSOR;
} else if (str == "build_intlist") {
return PicklerClass::INTLIST;
} else if (str == "build_tensorlist") {
return PicklerClass::TENSORLIST;
} else if (str == "build_doublelist") {
return PicklerClass::DOUBLELIST;
} else if (str == "build_boollist") {
return PicklerClass::BOOLLIST;
}
// TODO [unpickler refactor]
if (str == "TensorID") {
return PicklerClass::TENSOR;
} else if (str == "IntList") {
return PicklerClass::INTLIST;
}
AT_ERROR("Unknown class name for unpickler: ", str);
}
const char* getClassName(PicklerClass cls) {
switch (cls) {
case PicklerClass::TENSOR:
return "build_tensor_from_id";
case PicklerClass::INTLIST:
return "build_intlist";
case PicklerClass::TENSORLIST:
return "build_tensorlist";
case PicklerClass::DOUBLELIST:
return "build_doublelist";
case PicklerClass::BOOLLIST:
return "build_boollist";
default:
AT_ERROR("Unknown class for pickler");
}
}
const std::vector<char>& Pickler::stack() {
return stack_;
}
void Pickler::protocol() {
push<OpCode>(OpCode::PROTO);
push<uint8_t>(PROTOCOL_VERSION);
}
void Pickler::startTuple() {
// All attributes get pushed into a tuple and their indices saved in the
// module def
push<OpCode>(OpCode::MARK);
}
void Pickler::endTuple() {
push<OpCode>(OpCode::TUPLE);
}
void Pickler::stop() {
push<OpCode>(OpCode::STOP);
}
void Pickler::torchSaveStop() {
// Add the binary data for all the tensors to be included in the same binary
// TODO: The pickler should be refactored to stream out to a stream directly
// instead of staging in the stack_ array
// As another pickle program in the same binary archive, add a list of
// keys for each tensor (see torch/serialization.py)
protocol();
push<OpCode>(OpCode::MARK);
for (size_t i = 0; i < tensor_data_.size(); ++i) {
std::string key = std::to_string(i);
push<OpCode>(OpCode::BINUNICODE);
push<uint32_t>(key.size());
pushBytes(key);
}
push<OpCode>(OpCode::TUPLE);
stop();
// Now dump the tensor binary data
for (const auto& data : tensor_data_) {
// first dump size
push<size_t>(data.numel());
stack_.insert(stack_.end(), data.data(), data.data() + data.sizeInBytes());
}
}
void Pickler::torchSaveStart() {
// Output data to match torch.save, see torch/serialization.py for details
// Magic number (0x1950a86a20f9469cfc6c)
protocol();
push<OpCode>(OpCode::LONG1);
// LONG1 size
pushBytes("\x0a");
// LONG1 data
pushBytes("\x6c\xfc\x9c\x46\xf9\x20\x6a\xa8\x50\x19");
stop();
// Protocol Version (1001)
protocol();
push<OpCode>(OpCode::BININT2);
pushBytes("\xe9\x03");
stop();
// sys_info, this isn't actually used in de-serialization so we can leave this
// one empty
protocol();
push<OpCode>(OpCode::EMPTY_DICT);
stop();
}
// unmemoized version called by pushIValue
void Pickler::pushIValueImpl(const IValue& ivalue) {
if (ivalue.isTensor()) {
pushTensor(ivalue);
} else if (ivalue.isTuple()) {
pushTuple(ivalue);
} else if (ivalue.isDouble()) {
pushDouble(ivalue);
} else if (ivalue.isInt()) {
pushInt(ivalue);
} else if (ivalue.isBool()) {
if (ivalue.toBool()) {
push<OpCode>(OpCode::NEWTRUE);
} else {
push<OpCode>(OpCode::NEWFALSE);
}
} else if (ivalue.isString()) {
pushStringImpl(ivalue.toStringRef());
} else if (ivalue.isGenericList()) {
pushGenericList(ivalue);
} else if (ivalue.isGenericDict()) {
pushDict(ivalue);
} else if (ivalue.isNone()) {
push<OpCode>(OpCode::NONE);
} else if (ivalue.isIntList()) {
pushSpecializedList(
ivalue, PicklerClass::INTLIST, [=](const IValue& ivalue) {
for (const int64_t item : ivalue.toIntListRef()) {
pushIValue(item);
}
});
} else if (ivalue.isTensorList()) {
pushSpecializedList(
ivalue, PicklerClass::TENSORLIST, [=](const IValue& ivalue) {
for (const at::Tensor& item : ivalue.toTensorListRef()) {
pushIValue(item);
}
});
} else if (ivalue.isDoubleList()) {
pushSpecializedList(
ivalue, PicklerClass::DOUBLELIST, [=](const IValue& ivalue) {
for (double item : ivalue.toDoubleListRef()) {
pushIValue(item);
}
});
} else if (ivalue.isBoolList()) {
pushSpecializedList(
ivalue, PicklerClass::BOOLLIST, [=](const IValue& ivalue) {
for (bool item : ivalue.toBoolList()) {
pushIValue(item);
}
});
} else if (ivalue.isObject()) {
auto obj = ivalue.toObject();
auto type = obj->type();
pushGlobal(type->qualifier(), type->basename());
push<OpCode>(OpCode::EMPTY_TUPLE);
push<OpCode>(OpCode::NEWOBJ);
if (checkHasValidSetGetState(type)) {
Function* getstate = type->getMethod("__getstate__");
pushIValue((*getstate)({obj}));
} else {
push<OpCode>(OpCode::EMPTY_DICT);
push<OpCode>(OpCode::MARK);
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
pushString(type->getAttributeName(i));
pushIValue(obj->getSlot(i));
}
push<OpCode>(OpCode::SETITEMS);
}
push<OpCode>(OpCode::BUILD);
} else {
AT_ERROR("Unknown IValue type for pickling: ", ivalue.tagKind());
}
}
void Pickler::pushIValue(const IValue& ivalue) {
// Check if reference ivalue has been saved before
if (ivalue.isPtrType()) {
const void* ptr = ivalue.internalToPointer();
TORCH_CHECK(
ptr != nullptr,
"Pickler cannot memoize ",
ivalue.tagKind(),
" IValue ",
ivalue);
auto memo_entry = memoized_ivalue_map_.find(ptr);
if (memo_entry != memoized_ivalue_map_.end()) {
// This value has already been pushed, just do a BINGET
pushBinGet(memo_entry->second);
return;
}
}
pushIValueImpl(ivalue);
if (ivalue.isPtrType()) {
memoized_ivalues_.push_back(ivalue);
memoized_ivalue_map_[ivalue.internalToPointer()] = pushNextBinPut();
}
}
void Pickler::pushInt(const IValue& ivalue) {
auto n = ivalue.toInt();
if (n >= std::numeric_limits<int8_t>::min() &&
n <= std::numeric_limits<int8_t>::max()) {
push<OpCode>(OpCode::BININT1);
push<int8_t>(n);
} else if (
n >= std::numeric_limits<int32_t>::min() &&
n <= std::numeric_limits<int32_t>::max()) {
push<OpCode>(OpCode::BININT);
push<int32_t>(n);
} else {
// Push 8 byte integer
push<OpCode>(OpCode::LONG1);
push<uint8_t>(8);
push<int64_t>(n);
}
}
void Pickler::pushBinGet(uint32_t memo_id) {
if (memo_id <= std::numeric_limits<uint8_t>::max()) {
push<OpCode>(OpCode::BINGET);
push<uint8_t>(memo_id);
} else {
// Memoized too many items, issue a LONG_BINGET instead
push<OpCode>(OpCode::LONG_BINGET);
push<uint32_t>(memo_id);
}
}
// unmemoized encoding of a string
void Pickler::pushStringImpl(const std::string& string) {
push<OpCode>(OpCode::BINUNICODE);
push<uint32_t>(string.size());
pushBytes(string);
}
void Pickler::pushString(const std::string& string) {
auto it = memoized_strings_map_.find(string);
if (it == memoized_strings_map_.end()) {
pushStringImpl(string);
memoized_strings_map_[string] = pushNextBinPut();
} else {
pushBinGet(it->second);
}
}
void Pickler::pushStorageOfTensor(const at::Tensor& tensor) {
const at::Storage& storage = tensor.storage();
void* addr = storage.unsafeGetStorageImpl();
auto it = memoized_storage_map_.find(addr);
if (it != memoized_storage_map_.end()) {
pushBinGet(it->second);
return;
}
// Tuple for persistent_load
push<OpCode>(OpCode::MARK);
// typename
pushString("storage");
// data_type
std::stringstream data_type;
data_type << toString(tensor.scalar_type()) << "Storage";
pushGlobal("torch", data_type.str());
// root_key
pushString(std::to_string(tensor_data_.size()));
// location
pushString("cpu");
// size
pushInt(tensor.numel());
// view_metadata
push<OpCode>(OpCode::NONE);
push<OpCode>(OpCode::TUPLE);
push<OpCode>(OpCode::BINPERSID);
memoized_storage_map_[addr] = pushNextBinPut();
tensor_data_.push_back(getWriteableTensorData(tensor));
}
void Pickler::pushBytes(const std::string& string) {
stack_.insert(stack_.end(), string.begin(), string.end());
}
void Pickler::pushGlobal(
const std::string& module_name,
const std::string& class_name) {
std::stringstream ss;
ss << module_name << "\n" << class_name << "\n";
std::string key = ss.str();
auto memo_entry = memoized_globals_map_.find(key);
if (memo_entry == memoized_globals_map_.end()) {
push<OpCode>(OpCode::GLOBAL);
pushBytes(key);
// Push BINPUT without adding anything to the memoized_ivalues_
size_t memo_id = pushNextBinPut();
memoized_globals_map_.insert({key, memo_id});
} else {
pushBinGet(memo_entry->second);
}
}
void Pickler::pushTensor(const IValue& ivalue) {
if (tensor_table_ == nullptr) {
pushLiteralTensor(ivalue);
} else {
pushTensorReference(ivalue);
}
}
void Pickler::pushLiteralTensor(const IValue& ivalue) {
// In contrast to tensor references, literal tensors are included in the
// pickle program binary blob. They are written to the file after the STOP
// opcode. They can't be included in the pickle program itself without a bunch
// of extra machinery since byte strings are limited to 4 GB.
//
// The format here is the same one used by `torch.save()`. The code for the
// format can be found in `torch/serialization.py`.
auto tensor = ivalue.toTensor();
// The arguments to this function are:
// storage, storage_offset, size, stride, requires_grad, backward_hooks
pushGlobal("torch._utils", "_rebuild_tensor_v2");
push<OpCode>(OpCode::MARK);
pushStorageOfTensor(tensor);
// storage offset
int64_t storage_offset = 0;
pushInt(storage_offset);
// size
push<OpCode>(OpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<OpCode>(OpCode::TUPLE);
// stride
push<OpCode>(OpCode::MARK);
for (auto stride : tensor.strides()) {
pushInt(stride);
}
push<OpCode>(OpCode::TUPLE);
// requires_grad
pushIValue(tensor.requires_grad());
// backward_hooks
pushGlobal("collections", "OrderedDict");
push<OpCode>(OpCode::EMPTY_TUPLE);
// Construct the collections.OrderedDict for the backward_hooks
push<OpCode>(OpCode::REDUCE);
push<OpCode>(OpCode::TUPLE);
// Call torch._utils._rebuild_tensor_v2
push<OpCode>(OpCode::REDUCE);
}
void Pickler::pushClass(PicklerClass cls) {
pushGlobal("torch.jit._pickle", getClassName(cls));
}
void Pickler::pushTensorReference(const IValue& ivalue) {
pushClass(PicklerClass::TENSOR);
tensor_table_->push_back(ivalue.toTensor());
int64_t tensor_id = tensor_table_->size() - 1;
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<OpCode>(OpCode::MARK);
pushIValue(tensor_id);
push<OpCode>(OpCode::TUPLE);
push<OpCode>(OpCode::REDUCE);
}
void Pickler::pushSpecializedList(
const IValue& ivalue,
PicklerClass cls,
const std::function<void(const IValue&)>& item_pusher) {
pushClass(cls);
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<OpCode>(OpCode::MARK);
push<OpCode>(OpCode::EMPTY_LIST);
// Mark list
push<OpCode>(OpCode::MARK);
// Add all items
item_pusher(ivalue);
// Finish list
push<OpCode>(OpCode::APPENDS);
// Finish tuple
push<OpCode>(OpCode::TUPLE);
// Call reduce
push<OpCode>(OpCode::REDUCE);
}
void Pickler::pushDouble(const IValue& ivalue) {
double value = ivalue.toDouble();
AT_ASSERT(sizeof(double) == 8);
char* bytes = reinterpret_cast<char*>(&value);
push<OpCode>(OpCode::BINFLOAT);
for (size_t i = 0; i < 8; ++i) {
push<uint8_t>(bytes[8 - i - 1]);
}
}
void Pickler::pushDict(const IValue& ivalue) {
push<OpCode>(OpCode::EMPTY_DICT);
push<OpCode>(OpCode::MARK);
// Sort the dict for deterministic keys
auto dict_items = iterationOrder(ivalue.toGenericDict());
for (const auto& pair : dict_items) {
pushIValue(pair.first);
pushIValue(pair.second);
}
push<OpCode>(OpCode::SETITEMS);
}
size_t Pickler::pushNextBinPut() {
if (memo_id_ <= std::numeric_limits<uint8_t>::max()) {
push<OpCode>(OpCode::BINPUT);
push<uint8_t>(memo_id_);
} else {
// Memoized too many items, issue a LONG_BINPUT instead
push<OpCode>(OpCode::LONG_BINPUT);
push<uint32_t>(memo_id_);
}
AT_ASSERT(memo_id_ <= std::numeric_limits<uint32_t>::max());
++memo_id_;
return memo_id_ - 1;
}
void Pickler::pushGenericList(const IValue& ivalue) {
auto list = ivalue.toGenericListRef();
push<OpCode>(OpCode::EMPTY_LIST);
push<OpCode>(OpCode::MARK);
for (const IValue& item : list) {
pushIValue(item);
}
push<OpCode>(OpCode::APPENDS);
}
void Pickler::pushTuple(const IValue& ivalue) {
// TODO: Small tuple unrolling (e.g. TUPLE3)
push<OpCode>(OpCode::MARK);
auto tuple = ivalue.toTuple();
for (const IValue& item : tuple->elements()) {
pushIValue(item);
}
push<OpCode>(OpCode::TUPLE);
}
std::vector<IValue> Unpickler::parse_ivalue_list() {
run();
TORCH_CHECK(
stack_.size() == 1,
"Unpickler expected 1 element on the stack, but found ",
stack_.size());
auto value = stack_[0];
if (value.isGenericList()) {
// TODO [unpickler refactor]
return value.toGenericListRef().vec();
}
return value.toTuple()->elements();
}
double Unpickler::readFloat() {
AT_ASSERT(sizeof(double) == 8);
AT_ASSERT(bytes_ + 8 < end_ptr_);
double result;
// Pickle floats are big endian, so reverse the bytes
std::reverse_copy(
reinterpret_cast<const char*>(bytes_),
reinterpret_cast<const char*>(bytes_ + 8),
reinterpret_cast<char*>(&result));
bytes_ += 8;
return result;
}
void Unpickler::run() {
// Expect a PROTO opcode and protocol number at the start of blob
TORCH_CHECK(
readOpCode() == OpCode::PROTO,
"Expected PROTO opcode at the start"
" of pickle archive");
uint8_t protocol = read<uint8_t>();
TORCH_CHECK(
protocol == 2,
"Only Pickle protocol 2 is supported, found protocol = ",
protocol);
while (bytes_ < end_ptr_) {
OpCode opcode = readInstruction();
if (opcode == OpCode::STOP) {
return;
}
}
AT_ERROR("Overran buffer while unpickling data, didn't find STOP opcode");
}
void Unpickler::setInput(size_t memo_id) {
AT_ASSERT(!stack_.empty());
if (memo_id >= memo_table_.size()) {
memo_table_.insert(
memo_table_.end(), memo_id - memo_table_.size(), IValue());
memo_table_.push_back(stack_.back());
} else {
memo_table_[memo_id] = stack_.back();
}
}
// emplace_back on bool vectors does not exist on some systems
// avoid it by calling push_back for bool
template <typename T>
inline void append(std::vector<T>& a, T&& e) {
a.emplace_back(std::move(e));
}
template <>
inline void append<bool>(std::vector<bool>& a, bool&& e) {
a.push_back(e);
}
template <typename T>
static IValue toSpecializedList(const IValue& generic) {
auto ivalues = generic.toGenericListRef();
std::vector<T> specialized;
specialized.reserve(ivalues.size());
for (const IValue& iv : ivalues) {
append(specialized, iv.to<T>());
}
return IValue(std::move(specialized));
}
OpCode Unpickler::readInstruction() {
auto opcode = readOpCode();
switch (opcode) {
case OpCode::EMPTY_LIST: {
stack_.emplace_back(
c10::impl::GenericList(c10::impl::deprecatedUntypedList()));
} break;
case OpCode::EMPTY_TUPLE: {
if (empty_tuple_.isNone()) {
// we only need one object, since tuples are not mutable.
empty_tuple_ = c10::ivalue::Tuple::create({});
}
stack_.emplace_back(empty_tuple_);
} break;
case OpCode::BINPUT: {
size_t memo_id = read<uint8_t>();
setInput(memo_id);
} break;
case OpCode::LONG_BINPUT: {
TORCH_CHECK(
std::numeric_limits<size_t>::max() >=
std::numeric_limits<uint32_t>::max(),
"Found a LONG_BINPUT opcode, but size_t on this system is "
"not big enough to decode it");
size_t memo_id = read<uint32_t>();
setInput(memo_id);
} break;
case OpCode::MARK: {
// Mark location of the container ivalue in the stack
marks_.push_back(stack_.size());
} break;
case OpCode::NEWTRUE: {
stack_.emplace_back(true);
} break;
case OpCode::NEWFALSE: {
stack_.emplace_back(false);
} break;
case OpCode::NONE: {
stack_.emplace_back(IValue());
} break;
case OpCode::BININT1: {
int8_t value = read<int8_t>();
stack_.emplace_back(int64_t(value));
} break;
case OpCode::BININT: {
int32_t value = read<int32_t>();
stack_.emplace_back(int64_t(value));
} break;
case OpCode::LONG1: {
// Only read LONG1s with 8 as the length
uint8_t length = read<uint8_t>();
AT_ASSERT(length == 8);
stack_.emplace_back(int64_t(read<int64_t>()));
} break;
case OpCode::BINUNICODE: {
uint32_t length = read<uint32_t>();
const char* characters = reinterpret_cast<const char*>(bytes_);
AT_ASSERT(bytes_ + length < end_ptr_);
bytes_ += length;
stack_.emplace_back(std::string(characters, /*n=*/length));
} break;
case OpCode::BINFLOAT:
stack_.emplace_back(readFloat());
break;
case OpCode::TUPLE: {
size_t start = marks_.back();
marks_.pop_back();
auto tuple = c10::ivalue::Tuple::create({});
tuple->elements().reserve(stack_.size() - start);
auto start_it = stack_.begin() + start;
for (auto it = start_it; it != stack_.end(); ++it) {
tuple->elements().emplace_back(*it);
}
stack_.erase(start_it, stack_.end());
stack_.emplace_back(tuple);
} break;
case OpCode::EMPTY_DICT:
stack_.emplace_back(c10::impl::GenericDict(c10::impl::deprecatedUntypedDict()));
break;
case OpCode::APPENDS: {
readList();
} break;
case OpCode::SETITEMS: {
size_t start = marks_.back();
marks_.pop_back();
auto dict = stack_.at(start - 1).toGenericDict();
for (size_t i = start; i < stack_.size(); i += 2) {
dict.insert_or_assign(stack_[i], stack_[i + 1]);
}
stack_.erase(stack_.begin() + start, stack_.end());
} break;
case OpCode::BINGET: {
stack_.push_back(memo_table_.at(read<uint8_t>()));
} break;
case OpCode::LONG_BINGET: {
stack_.push_back(memo_table_.at(read<uint32_t>()));
} break;
case OpCode::STOP:
break;
case OpCode::GLOBAL: {
// Module name, it's not needed for anything
auto module_name = readString();
auto class_name = readString();
// TODO [unpickler refactor] __main__ isn't used by the pickler anymore
if (module_name == "__main__") {
auto pickler_class = getClass(class_name);
globals_.emplace_back([this, pickler_class] {
// TODO: [unpickler refactor]
auto setitem_data = stack_.back();
stack_.pop_back();
switch (pickler_class) {
case PicklerClass::TENSOR:
stack_.emplace_back(tensor_table_->at(setitem_data.toInt()));
break;
case PicklerClass::INTLIST:
stack_.emplace_back(toSpecializedList<int64_t>(setitem_data));
break;
default:
AT_ERROR("Unknown pickler class id", pickler_class);
}
});
} else if (module_name == "torch.jit._pickle") {
auto pickler_class = getClass(class_name);
globals_.emplace_back([this, pickler_class] {
// Pop reduce arg off the stack
auto data = stack_.back().toTuple()->elements().at(0);
stack_.pop_back();
switch (pickler_class) {
case PicklerClass::TENSOR:
stack_.emplace_back(tensor_table_->at(data.toInt()));
break;
case PicklerClass::INTLIST:
stack_.emplace_back(toSpecializedList<int64_t>(data));
break;
case PicklerClass::TENSORLIST:
stack_.emplace_back(toSpecializedList<at::Tensor>(data));
break;
case PicklerClass::DOUBLELIST:
stack_.emplace_back(toSpecializedList<double>(data));
break;
case PicklerClass::BOOLLIST:
stack_.emplace_back(toSpecializedList<bool>(data));
break;
default:
AT_ERROR("Unknown pickler class id");
}
});
} else {
AT_ASSERT(class_resolver_);
at::StrongTypePtr type =
class_resolver_(c10::QualifiedName(module_name, class_name));
auto cls = type.type_->expect<at::ClassType>();
size_t n = cls->numAttributes();
if (checkHasValidSetGetState(type.type_)) {
globals_.emplace_back([this, type, n] {
auto arg = std::move(stack_.back());
stack_.pop_back();
auto obj = c10::ivalue::Object::create(type, n);
(*type.type_->getMethod("__setstate__"))({obj, arg});
stack_.emplace_back(std::move(obj));
});
} else {
globals_.emplace_back([this, type, cls, n] {
auto dict = std::move(stack_.back()).toGenericDict();
stack_.pop_back();
auto obj = c10::ivalue::Object::create(type, n);
for (size_t i = 0; i < n; ++i) {
obj->setSlot(i, dict.at(cls->getAttributeName(i)));
}
stack_.emplace_back(std::move(obj));
});
}
}
stack_.emplace_back(int64_t(globals_.size() - 1));
} break;
case OpCode::NEWOBJ: {
// pop empty tuple, the actual action is stored in the globals_stack_
stack_.pop_back();
} break;
// because we have NEWOBJ do nothing, BUILD and REDUCE end up doing
// the same thing
case OpCode::BUILD:
case OpCode::REDUCE: {
// stack is: <functor_idx> <functor_arg>
// extract <functor_idx> and remove from the stack:
std::swap(*(stack_.end() - 2), *(stack_.end() - 1));
size_t idx = stack_.back().toInt();
stack_.pop_back();
// stack is: <functor_arg>
globals_.at(idx)();
} break;
default:
AT_ERROR(
"Unknown opcode for unpickling at ",
reinterpret_cast<void*>(opcode),
": ",
static_cast<uint8_t>(opcode));
}
return opcode;
}
// Pop all the list items off of the stack and append them to the list at the
// corresponding MARK
void Unpickler::readList() {
size_t start = marks_.back();
marks_.pop_back();
auto list_ivalue = stack_.at(start - 1);
auto num_elements = stack_.size() - start;
auto elements = at::ArrayRef<IValue>(stack_).slice(start);
if (list_ivalue.isIntList()) {
auto list = std::move(list_ivalue).toIntList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toInt());
}
} else if (list_ivalue.isTensorList()) {
auto list = std::move(list_ivalue).toTensorList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toTensor());
}
} else if (list_ivalue.isDoubleList()) {
auto list = std::move(list_ivalue).toDoubleList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toDouble());
}
} else if (list_ivalue.isBoolList()) {
auto list = std::move(list_ivalue).toBoolList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.push_back(elem.toBool());
}
} else if (list_ivalue.isGenericList()) {
auto list = std::move(list_ivalue).toGenericList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem);
}
} else {
AT_ERROR("Unknown IValue list kind: ", list_ivalue.tagKind());
}
stack_.erase(stack_.begin() + start, stack_.end());
}
inline bool is_valid_python_id_char(char c) {
return c == '_' || c == '.' || (c >= '0' && c <= '9') ||
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}
// Read a newline terminated string
std::string Unpickler::readString() {
const char* chars = reinterpret_cast<const char*>(bytes_);
const char* char_end_ptr = reinterpret_cast<const char*>(end_ptr_);
size_t n = 0;
while (true) {
char c = chars[n];
if (c == '\n') {
break;
}
// Simple check just in case there is no terminating '\n'
TORCH_CHECK(
is_valid_python_id_char(c),
"Found character '",
uint8_t(c),
"' in string, "
"strings must be qualified Python identifiers");
// Increment after to exclude newline from string
++n;
TORCH_CHECK(
chars + n < char_end_ptr,
"Unpickler overran buffer while reading a string (expected a newline)");
}
// Increment by string length + newline char
bytes_ += n + 1;
return std::string(chars, n);
}
OpCode Unpickler::readOpCode() {
return static_cast<OpCode>(read<uint8_t>());
}
WriteableTensorData getWriteableTensorData(const at::Tensor& tensor) {
WriteableTensorData result;
result.tensor_ = tensor;
result.size_ = tensor.element_size() * tensor.storage().size();
// TODO HIP support
if (tensor.storage().device_type() == at::DeviceType::CUDA) {
// NB: This new tensor is created to support cuda tensors.
// Storages can be mutated when converting tensors from cuda to cpu,
// and we need a cpu tensor to copy data from.
result.tensor_ = at::empty({0}, tensor.options())
.set_(
tensor.storage(),
/* storage_offset = */ 0,
/* size = */
{static_cast<int64_t>(tensor.storage().size())},
/* stride = */ {1})
.cpu();
TORCH_CHECK(
result.tensor_.element_size() * result.tensor_.storage().size() ==
result.size_,
"Storage tensor size did not match record size");
}
return result;
}
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls) {
// Check that the schemas for __getstate__ and __setstate__ are correct
auto getstate = cls->getMethod("__getstate__");
if (getstate == nullptr) {
return false;
}
auto get_schema = getstate->getSchema();
// Check __getstate__
// __getstate__ is expected to be (self) -> T
TORCH_CHECK(
get_schema.arguments().size() == 1,
"'__getstate__' must have 'self' as its only argument, but found ",
get_schema.arguments().size(),
" arguments");
TORCH_CHECK(
get_schema.returns().size() == 1,
"'__getstate__' must return 1 value, but found ",
get_schema.returns().size());
// Check __setstate__ if the method exists
// __setstate__ is expected to be (self, T) -> None
auto setstate = cls->getMethod("__setstate__");
if (!setstate) {
return false;
}
auto set_schema = setstate->getSchema();
TORCH_CHECK(
set_schema.arguments().size() == 2,
"'__setstate__' must have 'self' and the state as its "
"only arguments, but found ",
set_schema.arguments().size(),
" arguments");
TORCH_CHECK(
set_schema.returns().size() == 1,
"'__setstate__' must return None, but found ",
set_schema.returns().size(),
" return values");
TORCH_CHECK(
set_schema.returns().at(0).type()->isSubtypeOf(NoneType::get()),
"'__setstate__' must return None, but found value of type",
set_schema.returns().at(0).type()->python_str());
// Check that the return type of __getstate__ matches the input to
// __setstate__
auto get_type = get_schema.returns().at(0).type();
auto set_type = set_schema.arguments().at(1).type();
TORCH_CHECK(
set_type->isSubtypeOf(get_type),
"'__getstate__'s return type (",
get_type->python_str(),
" does not match '__setstate__'s argument type (",
set_type->python_str(),
"))");
return true;
}
} // namespace jit
} // namespace torch