forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHLogAdd.cpp
88 lines (78 loc) · 1.7 KB
/
THLogAdd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <TH/THLogAdd.h>
#include <float.h>
#ifdef USE_DOUBLE
#define MINUS_LOG_THRESHOLD -39.14
#else
#define MINUS_LOG_THRESHOLD -18.42
#endif
const double THLog2Pi=1.83787706640934548355;
const double THLogZero=-DBL_MAX;
const double THLogOne=0;
double THLogAdd(double log_a, double log_b)
{
double minusdif;
if (log_a < log_b)
{
double tmp = log_a;
log_a = log_b;
log_b = tmp;
}
minusdif = log_b - log_a;
#ifdef DEBUG
if (isnan(minusdif))
THError("THLogAdd: minusdif (%f) log_b (%f) or log_a (%f) is nan", minusdif, log_b, log_a);
#endif
if (minusdif < MINUS_LOG_THRESHOLD)
return log_a;
else
return log_a + log1p(exp(minusdif));
}
double THLogSub(double log_a, double log_b)
{
double minusdif;
if (log_a < log_b)
THError("LogSub: log_a (%f) should be greater than log_b (%f)", log_a, log_b);
minusdif = log_b - log_a;
#ifdef DEBUG
if (isnan(minusdif))
THError("LogSub: minusdif (%f) log_b (%f) or log_a (%f) is nan", minusdif, log_b, log_a);
#endif
if (log_a == log_b)
return THLogZero;
else if (minusdif < MINUS_LOG_THRESHOLD)
return log_a;
else
return log_a + log1p(-exp(minusdif));
}
/* Credits to Leon Bottou */
double THExpMinusApprox(const double x)
{
#define EXACT_EXPONENTIAL 0
#if EXACT_EXPONENTIAL
return exp(-x);
#else
/* fast approximation of exp(-x) for x positive */
# define A0 (1.0)
# define A1 (0.125)
# define A2 (0.0078125)
# define A3 (0.00032552083)
# define A4 (1.0172526e-5)
if (x < 13.0)
{
/* assert(x>=0); */
double y;
y = A0+x*(A1+x*(A2+x*(A3+x*A4)));
y *= y;
y *= y;
y *= y;
y = 1/y;
return y;
}
return 0;
# undef A0
# undef A1
# undef A2
# undef A3
# undef A4
#endif
}