forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DistributionsHelper.h
264 lines (222 loc) · 7.15 KB
/
DistributionsHelper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#pragma once
// define constants like M_PI and C keywords for MSVC
#ifdef _MSC_VER
#define _USE_MATH_DEFINES
#include <math.h>
#endif
#include <ATen/CPUGenerator.h>
#include <ATen/core/Array.h>
#include <type_traits>
#include <limits>
#include <cmath>
/**
* Distributions kernel adapted from THRandom.cpp
* The kernels try to follow std::random distributions signature
* For instance: in ATen
* auto gen = at::detail::createCPUGenerator();
* at::uniform_real_distribution<double> uniform(0, 1);
* auto sample = uniform(gen.get());
*
* vs std::random
*
* std::mt19937 gen;
* std::uniform_real_distribution uniform(0, 1);
* auto sample = uniform(gen);
*/
namespace at {
// Using VectorType in Box-muller derived distributions to avoid
// code duplication
template <typename T>
struct VectorType { };
#if defined(__CUDACC__) || defined(__HIPCC__)
template <> struct VectorType<half> { using type = at::detail::Array<float, 2>; };
#endif
template <> struct VectorType<Half> { using type = at::detail::Array<float, 2>; };
template <> struct VectorType<float> { using type = at::detail::Array<float, 2>; };
template <> struct VectorType<double> { using type = at::detail::Array<double, 2>; };
template <typename T>
using vect_type = typename VectorType<T>::type;
// Using DistAccumType in accumulate types for distributions.
// Note: Ideally we'd be using ATen/AccumulateType.h but looks
// like the there is some inconsistency in how accumulate types
// are mapped currently, e.g. for the cpu side, float is mapped
// to double.
template <typename T>
struct DistAccumType { };
#if defined(__CUDACC__) || defined(__HIPCC__)
template <> struct DistAccumType<half> { using type = float; };
#endif
template <> struct DistAccumType<Half> { using type = float; };
template <> struct DistAccumType<float> { using type = float; };
template <> struct DistAccumType<double> { using type = double; };
template <typename T>
using dist_acctype = typename DistAccumType<T>::type;
// Constants for uniform distribution
// doubles have 52 bits of mantissa (fractional part)
constexpr uint64_t DOUBLE_MASK = (1ULL << 53) - 1;
constexpr double DOUBLE_DIVISOR = 1.0 / (1ULL << 53);
// floats have 23 bits of mantissa (fractional part)
constexpr uint32_t FLOAT_MASK = (1 << 24) - 1;
constexpr float FLOAT_DIVISOR = 1.0f / (1 << 24);
/**
* Samples a uniform distribution in the range [0,1) of type T
*/
template <typename T>
struct uniform_real_distribution {
inline uniform_real_distribution(T a_in, T b_in) {
TORCH_CHECK(a_in <= b_in);
TORCH_CHECK(b_in-a_in <= std::numeric_limits<T>::max());
a = a_in;
b = b_in;
}
inline dist_acctype<T> operator()(at::CPUGenerator* generator){
dist_acctype<T> x;
if(std::is_same<T, double>::value) {
x = (generator->random64() & DOUBLE_MASK) * DOUBLE_DIVISOR;
} else {
x = (generator->random() & FLOAT_MASK) * FLOAT_DIVISOR;
}
return (x * (b - a) + a);
}
private:
T a;
T b;
};
/**
* Samples a normal distribution using the Box-Muller method
* Takes mean and standard deviation as inputs
* Note that Box-muller method returns two samples at a time.
* Hence, we cache the "next" sample in the CPUGenerator class.
*/
template <typename T>
struct normal_distribution {
inline normal_distribution(T mean_in, T stdv_in) {
TORCH_CHECK(stdv_in > 0);
mean = mean_in;
stdv = stdv_in;
}
inline dist_acctype<T> operator()(at::CPUGenerator* generator){
dist_acctype<T> ret;
// return cached values if available
if (std::is_same<T, double>::value) {
if (generator->next_double_normal_sample()) {
ret = *(generator->next_double_normal_sample()) * stdv + mean;
// reset c10::optional to null
generator->set_next_double_normal_sample(c10::optional<double>());
return ret;
}
} else {
if (generator->next_float_normal_sample()) {
ret = *(generator->next_float_normal_sample()) * stdv + mean;
// reset c10::optional to null
generator->set_next_float_normal_sample(c10::optional<float>());
return ret;
}
}
// otherwise generate new normal values
uniform_real_distribution<T> uniform(0.0, 1.0);
const dist_acctype<T> u1 = uniform(generator);
const dist_acctype<T> u2 = uniform(generator);
const dist_acctype<T> r = ::sqrt(static_cast<T>(-2.0) * ::log(static_cast<T>(1.0)-u2));
const dist_acctype<T> theta = static_cast<T>(2.0) * static_cast<T>(M_PI) * u1;
if (std::is_same<T, double>::value) {
dist_acctype<double> cache = r * ::sin(theta);
generator->set_next_double_normal_sample(c10::optional<double>(cache));
} else {
dist_acctype<float> cache = r * ::sin(theta);
generator->set_next_float_normal_sample(c10::optional<float>(cache));
}
ret = r * ::cos(theta) * stdv + mean;
return ret;
}
private:
T mean;
T stdv;
};
/**
* Samples a bernoulli distribution given a probability input
*/
template <typename T>
struct bernoulli_distribution {
inline bernoulli_distribution(T p_in) {
TORCH_CHECK(p_in >= 0 && p_in <= 1);
p = p_in;
}
inline int operator()(at::CPUGenerator* generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return uniform(generator) <= p;
}
private:
T p;
};
/**
* Samples a geometric distribution given a probability input
*/
template <typename T>
struct geometric_distribution {
inline geometric_distribution(T p_in) {
TORCH_CHECK(p_in > 0 && p_in < 1);
p = p_in;
}
inline int operator()(at::CPUGenerator* generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
dist_acctype<T> sample = uniform(generator);
return static_cast<int>(::log(static_cast<T>(1.0)-sample) / ::log(p)) + 1;
}
private:
T p;
};
/**
* Samples an exponential distribution given a lambda input
*/
template <typename T>
struct exponential_distribution {
inline exponential_distribution(T lambda_in) {
lambda = lambda_in;
}
inline T operator()(at::CPUGenerator* generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
dist_acctype<T> sample = uniform(generator);
return static_cast<T>(-1.0) / lambda * ::log(static_cast<T>(1.0)-sample);
}
private:
T lambda;
};
/**
* Samples a cauchy distribution given median and sigma as inputs
*/
template <typename T>
struct cauchy_distribution {
inline cauchy_distribution(T median_in, T sigma_in) {
median = median_in;
sigma = sigma_in;
}
inline T operator()(at::CPUGenerator* generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return median + sigma * ::tan(static_cast<T>(M_PI) * (uniform(generator)-static_cast<T>(0.5)));
}
private:
T median;
T sigma;
};
/**
* Samples a lognormal distribution
* Takes mean and standard deviation as inputs
* Outputs two samples at a time
*/
template <typename T>
struct lognormal_distribution {
inline lognormal_distribution(T mean_in, T stdv_in) {
TORCH_CHECK(stdv_in > 0);
mean = mean_in;
stdv = stdv_in;
}
inline T operator()(at::CPUGenerator* generator){
normal_distribution<T> normal(mean, stdv);
return ::exp(normal(generator));
}
private:
T mean;
T stdv;
};
} // namespace at