-
Notifications
You must be signed in to change notification settings - Fork 19
/
ns_set_analysis_weights
executable file
·147 lines (124 loc) · 6.21 KB
/
ns_set_analysis_weights
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
import sys
kB=8.6173324e-5
import argparse
parser = argparse.ArgumentParser(description="Set weights of analyses (structure_analysis_traj format) for const T ensemble average from nested sampling energies file")
parser.add_argument('--temperatures','-T', action='store', type=float, nargs='+', help='temperature to do ensemble average at')
parser.add_argument('--interval','-i', action='store', type=int, help='interval at which analyses were calculated relative to entries in energy file')
parser.add_argument('--energy_file','-e', action='store', type=str, help='energies file (ns_run format)')
parser.add_argument('--analysis_files', '-a', type=str, nargs='*', help='files with unweighted analysis results')
parser.add_argument('--sparse_traj_file','-t', action='store', type=str, help='if present, sparsified trajectory file, for printing most likely config at each T')
parser.add_argument('--process_analyses','-p', action='store_true', help='if set, process T dependent expectations of analyses instead of writing weighted analysis files')
args = parser.parse_args()
import quippy, re, numpy as np, ns_analyse, os.path
if args.analysis_files is None:
args.analysis_files = []
analyses = []
comment_lines =[]
desc_lines =[]
bin_labels = []
n_bins = []
n_data = []
for i in range(len(args.analysis_files)):
sys.stderr.write("reading analysis %d headers\n" % i)
analysis = open(args.analysis_files[i], "r")
comment_lines.append(analysis.readline().strip())
desc_line = analysis.readline().strip()
analyses.append(analysis)
desc_lines.append(desc_line)
p = re.search(r'\bn_bins=(\d+)\b', desc_line)
if p is None:
sys.stderr.write("Failed to parse bins from description line '%s'\n" % desc_line)
sys.exit(2)
n_bins.append(int(p.group(1)))
p = re.search(r'\bn_data=(\d+)\b', desc_line)
if p is None:
sys.stderr.write("Failed to parse data from description line '%s'\n" % desc_line)
sys.exit(2)
n_data.append(int(p.group(1)))
bin_labels.append([])
for i_bin in range(n_bins[i]):
bin_labels[i].append(analysis.readline().strip())
if len(args.analysis_files) > 0:
# check for non-equal n_data, if OK make n_data a scalar
if np.sum(np.array(n_data) != n_data[0]) != 0:
sys.stderr.write("Found some analysis with n_data not the same %s" % np.array_str(n_data))
n_data = n_data[0]
sys.stderr.write("reading analysis data\n")
analysis_data_lines = []
for i in range(len(analyses)):
analysis_data_lines.append( [ s.strip() for s in analyses[i].readlines() ] )
else:
n_data = None
sys.stderr.write("reading energies\n")
(n_walkers, n_cull, n_Extra_DOF, flat_V_prior, N_atoms, Es, Vs) = ns_analyse.read_inputs([args.energy_file])
if n_data is not None and n_data > 0:
# clip Es to be as long as necessary to match n_data
Es = Es[0:n_data*args.interval]
Vs = Vs[0:n_data*args.interval]
sys.stderr.write("got n_walkers %d n_cull %d len(Es) %d\n" % (n_walkers, n_cull, len(Es)))
sys.stderr.write("calculating log_a\n")
log_a = ns_analyse.calc_log_a(len(Es), n_walkers, n_cull)
n_data = len(Es) / args.interval
if args.process_analyses:
analysis_fd=[]
for analysis_file in args.analysis_files:
analysis_fd.append(open(analysis_file+".vs_T","w"))
analysis_fd[-1].write("# T mean var dmean_dT\n")
analysis_data = []
for i_analysis in range(len(analyses)):
if n_bins[i_analysis] > 1:
sys.stderr.write("Can't do '--process_analyses' for more than 1 bin\n")
sys.exit(2)
analysis_data.append(np.array([float(x) for x in analysis_data_lines[i_analysis]]))
for T in args.temperatures:
sys.stderr.write("doing T %f\n" % T)
beta = 1.0/(kB*T)
sys.stderr.write("calculating Z terms\n")
(Z_terms, shift) = ns_analyse.calc_Z_terms(beta, log_a, Es, flat_V_prior, N_atoms, Vs)
# create reduced Z terms by summing over relevant steps
Z_terms_reduced=np.zeros(n_data)
if args.process_analyses:
Es_selected = np.zeros(n_data)
for i_data in range(n_data):
Z_terms_reduced[i_data] = np.sum(Z_terms[i_data*args.interval:(i_data+1)*args.interval])
if args.process_analyses:
Es_selected[i_data] = Es[(i_data+1)*args.interval-1]
Z = np.sum(Z_terms_reduced)
if args.sparse_traj_file is not None:
sys.stderr.write("writing most likely configuration\n")
i_most_likely_config = np.argmax(Z_terms_reduced)
ar = quippy.AtomsReader(args.sparse_traj_file, start=i_most_likely_config)
at = iter(ar).next()
ar.close()
(filebase, ext) = os.path.splitext(args.sparse_traj_file)
aw = quippy.AtomsWriter(filebase+(".config_T_%f" % T)+ext)
aw.write(at)
aw.close()
if args.process_analyses:
E_expectation = sum(Z_terms_reduced[:]*Es_selected[:])/Z
if len(analyses) == 0:
for (Z_i,Z_term) in enumerate(Z_terms_reduced):
print (Z_i+1)*args.interval-1, Z_term/Z
else:
for i_analysis in range(len(analyses)):
if args.process_analyses:
analysis_expectation = sum(Z_terms_reduced[:]*analysis_data[i_analysis][:])/Z
analysis_var = sum(Z_terms_reduced[:]*analysis_data[i_analysis][:]**2)/Z - analysis_expectation**2
d_analysis_expectation_d_T = (1.0/(kB*T*T))*(sum(Z_terms_reduced[:]*analysis_data[i_analysis][:]*Es_selected[:])/Z - E_expectation*analysis_expectation)
analysis_fd[i_analysis].write("{} {} {} {}\n".format(T, analysis_expectation, analysis_var, d_analysis_expectation_d_T) )
else:
sys.stderr.write("writing analysis %d\n" % i_analysis)
outfile=open(args.analysis_files[i_analysis]+".T_%f" % T, "w")
outfile.write(comment_lines[i_analysis]+"\n")
outfile.write(desc_lines[i_analysis]+" do_weights\n")
for i_bin in range(n_bins[i_analysis]):
outfile.write(bin_labels[i_analysis][i_bin]+"\n")
for i_data in range(n_data):
outfile.write("%.10f %s\n" % (Z_terms_reduced[i_data]/Z, analysis_data_lines[i_analysis][i_data]))
outfile.close()
try:
for f in analysis_fd:
f.close()
except:
pass