-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcgb_bulk_modulus.py
executable file
·170 lines (141 loc) · 8.46 KB
/
cgb_bulk_modulus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
#####################################################
# This file is a component of ClusterGB #
# Copyright (c) 2018 Liam Huber #
# Released under the MIT License (see distribution) #
#####################################################
"""
Calculate and print the bulk modulus (GPa) and volume per atom (cubic angstroms) -- as a function of cell size (if more
than one unit cell repetitions were requested).
"""
from __future__ import absolute_import
import argparse
#from . import clustergb as cgb
import clustergb as cgb
import numpy as np
__author__ = "Liam Huber"
__copyright__ = "Copyright 2018, Liam Huber"
__license__ = "MIT"
__maintainer__ = "Liam Huber"
__email__ = "[email protected]"
__status__ = "Production"
def main(args):
finput = 'in.pressure.lammps'
evang3_to_gpa = 160.21766
latt_guess = args.fcc or args.bcc
xl_type = np.array(['fcc', 'bcc'])[np.array([args.fcc, args.bcc], dtype=bool)][0]
n_unit = np.array([4, 2])[np.array([args.fcc, args.bcc], dtype=bool)][0]
if args.solute is not None:
print(args.solute + " in " + args.host)
print("Repetitions, atom count, B (GPa), host vol, sol vol, sol pressure")
else:
print(args.host)
print("Repetitions, atom count, B (GPa), host vol")
if args.repetition_samples < 2:
rep_range = [args.repetitions]
else:
rep_range = np.logspace(0, np.log2(args.repetitions), args.repetition_samples, base=2).astype(int)
rep_range[-1] = args.repetitions
for reps in rep_range:
n_total = n_unit * reps**3
V0, B = _bulk_mod(xl_type, latt_guess, args.potential, args.host, args.lammps_max_steps,
args.lammps_force_convergence, finput, args.procs, args.strain, args.nsamples, reps)
vol_per_atom = V0 / float(n_total)
if args.solute is not None:
V0x, Bx = _bulk_mod(xl_type, latt_guess, args.potential, args.host, args.lammps_max_steps,
args.lammps_force_convergence, finput, args.procs, args.strain, args.nsamples,
reps, solute=args.solute, solute_ids=0)
sol_vol = V0x - V0 + vol_per_atom
sol_press = B * (V0x - V0) / vol_per_atom
print(reps, n_total, B * evang3_to_gpa, vol_per_atom, sol_vol, sol_press)
else:
print(reps, n_total, B * evang3_to_gpa, vol_per_atom)
return
def _bulk_mod(xl_type, latt_guess, pot_file, species, max_steps, force_convergence, input_file, nprocs,
strain, nsamples, cell_repetitions, solute=None, solute_ids=None):
"""
Using repetitions of the unit cell, run a relaxation of the cell size to get a good guess for the optimal lattice
constant, then calculate an energy-volume curve by straining about this. Extrace ideal cell volume (for supercell
if more than one repetition of the unit cell is used) and bulk modulus. Can also accommodate a single
substitutional solute atom.
Args:
xl_type (str): Crystal structure identifier.
latt_guess (float): Best-guess for ideal lattice constant.
pot_file (str): Path to empirical potential to use.
species (str): Space separated, potential-appropriate chemical symbols who will be applied (in order) to
the type column of the input file.
max_steps (int): Maximum number of CG steps to take.
force_convergence (float): Stopping threshold based on the L2 norm of the global force vector.
input_file (str): File to write LAMMPS input script to.
nprocs (int): How many processors to run on.
strain (float): Max fraction of the ideal lattice parameter to strain for creating energy-volume curve.
nsamples (int): Number of points on energy-volume curve.
cell_repetitions (int): How many repetitions of the unit cell to allow (in each of x-, y-, and
z-directions.)
solute: solute (str): Chemical symbol for the solute species. (Default is None.)
solute_ids (int or np.ndarray or list): Integer id(s) for which to change species. (Default is None.)
Returns:
2-element tuple containing
- (*float*) Ideal volume.
- (*float*) Bulk modulus (in GPa).
"""
if solute is not None:
species += ' ' + solute
min_data = cgb.lammps.run_minimization_bulk(xl_type, latt_guess, pot_file, species,
cell_repetitions=cell_repetitions, solute_ids=solute_ids,
max_steps=max_steps, force_convergence=force_convergence,
input_file=input_file, nprocs=nprocs)
better_latt_guess = min_data.lx / cell_repetitions
min_lat = (1 - strain) * better_latt_guess
max_lat = (1 + strain) * better_latt_guess
lattice_constants = np.linspace(min_lat, max_lat, nsamples)
volumes, energies = cgb.lammps.energy_volume_curve(xl_type, lattice_constants, pot_file, species,
cell_repetitions=cell_repetitions, solute_ids=solute_ids,
input_file=input_file, nprocs=nprocs)
fit = np.polyfit(volumes, energies, 2)
V0 = -fit[1] / (2 * fit[0])
B = 2 * V0 * fit[0]
return V0, B
def _ret_parser():
parser = argparse.ArgumentParser(description='Calculates the bulk modulus (in GPa) for a given potential, host '
'species, and crystal lattice by fitting a quadratic curve to the '
'energy-volume data. A single substitutional solute can be added to '
'the cell if the potential will allow it. In this case, it is '
'advisable to increase the cell repetitions and look at the change '
'in bulk modulus, volume, etc. as a function of supercell size (i.e. '
'solute concentration).',
formatter_class=argparse.RawTextHelpFormatter)
# Required
parser.add_argument('potential', type=cgb.lammps.potential_check,
help='Path to the empirical potential to use.')
parser.add_argument('host', type=str,
help='Elemental symbol for the host.')
lattice_args = parser.add_mutually_exclusive_group(required=True)
lattice_args.add_argument('--fcc', '-fcc', type=float,
help='Use fcc lattice with the given initial guess for lattice constant (in angstroms).')
lattice_args.add_argument('--bcc', '-bcc', type=float,
help='Use bcc lattice with the given initial guess for lattice constant (in angstroms).')
# Optional
parser.add_argument('--solute', '-sol', type=str, default=None,
help='Elemental symbol for a solute.')
parser.add_argument('--repetitions', '-reps', type=int, default=1,
help='Maximum number of unit cell repetitions to use for cell.')
parser.add_argument('--repetition_samples', '-rep_samples', type=int, default=1,
help='Number of logarithmically sampled cell repetitions to use between 1 and `repetitions`.')
parser.add_argument('--strain', '-stn', type=float, default=0.00001,
help='Maximum strain magnitude for generating energy-volume curve.')
parser.add_argument('--nsamples', '-n', type=int, default=8,
help='Number of points in energy-volume curve.')
parser.add_argument('--lammps_force_convergence', '-ftol', type=float, default=0.001,
help='Force convergence for all LAMMPS minimizations in eV/angstrom. (Minimizations are used '
'to find a good guess for the ideal volume before applying strains and using static '
'calculations to generate an energy-volume curve.)')
parser.add_argument('--lammps_max_steps', '-lms', type=int, default=10000,
help='Max steps for LAMMPS energy minimization.')
parser.add_argument('--procs', '-np', type=int, default=1,
help='Max processors available to run mpi on.')
return parser
if __name__ == '__main__':
returned_parser = _ret_parser()
arguments = returned_parser.parse_args()
main(arguments)