-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_unet.py
164 lines (141 loc) · 5.58 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
from unet import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
from sklearn.utils import class_weight
from tensorflow.keras.utils import to_categorical
import argparse
import datetime
# parser = argparse.ArgumentParser()
# parser.add_argument('--datapath', type=str, default='/home/bvanberl/scratch/data/')
# args = parser.parse_args()
# Load US images and segmentation labels
# data_path = args.datapath
data_path = '/scratch/bvanberl/data/'
X = np.load(data_path + 'X.npy')
Y = np.load(data_path + 'Y.npy')
print("SHAPES:",X.shape,Y.shape)
X = np.load(data_path + 'X_crossval.npy')
Y = np.load(data_path + 'Y_crossval.npy')
print("SHAPES:",X.shape,Y.shape)
X = np.squeeze(X, axis=1)
Y = np.squeeze(Y, axis=1)
X = np.expand_dims(X, axis=3)
Y = np.expand_dims(Y, axis=3)
Y = to_categorical(Y)
print("Y shape = " + str(Y.shape))
#X_train, X_valid, Y_train, Y_valid = train_test_split(X[:-434], Y[:-434], test_size=0.1, random_state=2019)
'''
# Training set will be users 2-4, test set will be user 1 (idx=0-203), val set will be user 5 (idx=-434)
X_val = X[-434:]
Y_val = Y[-434:]
X_test = X[0:203]
Y_test = Y[0:203]
X_train = X[203:-434]
Y_train = Y[203:-434]
print("Train set 203:-434 (user 2-4), val set -434: (user 5), test set 0:203 (user 1)")
'''
########################################################
# PARTITION FOR CROSS-VALIDATION
'''
print("SET A")
permut = list(range(0,78)) + list(range(611,1865)) + list(range(1955,2215)) + list(range(2314,2439)) # train
permut += list(range(1865,1955)) + list(range(2215,2295)) # val
permut += list(range(78,611)) + list(range(2295,2314)) # test
train_start = 0
train_end = 1717
val_start = 1717
val_end = 1887
test_start = 1887
test_end = 2439
print("SET B")
permut = list(range(0,1012)) + list(range(1432,1714)) + list(range(1792,2021)) + list(range(2108,2314)) + list(range(2369,2439)) # train
permut += list(range(1714,1792)) + list(range(2021,2108)) # val
permut += list(range(1012,1432)) + list(range(2314,2369)) # test
train_start = 0
train_end = 1799
val_start = 1799
val_end = 1964
test_start = 1964
test_end = 2439
print("SET C")
permut = list(range(78,1432)) + list(range(1714,2108)) + list(range(2215,2369)) # train
permut += list(range(0,78)) + list(range(2108,2215)) # val
permut += list(range(1432,1714)) + list(range(2369,2439)) # test
train_start = 0
train_end = 1902
val_start = 1902
val_end = 2087
test_start = 2087
test_end = 2439
'''
print("SET D")
permut = list(range(0,611)) + list(range(1012,1792)) + list(range(1865,1955)) + list(range(2021,2215)) + list(range(2295,2439)) # train
permut += list(range(1792,1865)) + list(range(1955,2021)) # val
permut += list(range(611,1012)) + list(range(2215,2295)) # test
train_start = 0
train_end = 1819
val_start = 1819
val_end = 1958
test_start = 1958
test_end = 2439
assert len(permut) == X.shape[0]
permut = np.array(permut)
X = X[permut]
Y = Y[permut]
X /= 255.0
X_test = X[test_start:test_end]
Y_test = Y[test_start:test_end]
X_val = X[val_start:val_end]
Y_val = Y[val_start:val_end]
X_train = X[train_start:train_end]
Y_train = Y[train_start:train_end]
########################################################
# Define callbacks
callbacks = [
EarlyStopping(patience=15, verbose=1),
TensorBoard(log_dir='./logs'),
ReduceLROnPlateau(factor=0.75, patience=15, min_lr=0.000005, verbose=1),
ModelCheckpoint('./models/setD_model_ckpt.h5', verbose=1, save_best_only=True, save_weights_only=False, monitor='val_loss')
]
# Initialize model
NUM_GPUS = 2
model, parallel_model = unet(num_gpus=NUM_GPUS)
# Train the model. 90% train and 10% validation
#model.fit(X_train, Y_train, batch_size=16, epochs=75, verbose=1,validation_data=(X_valid, Y_valid), shuffle=True, callbacks=callbacks)
data_gen_args = dict(
rotation_range=15,
shear_range=0.05,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 209
batch_size = 32
#image_datagen.fit(X_train, augment=True, seed=seed)
#mask_datagen.fit(Y_train, augment=True, seed=seed)
image_generator = image_datagen.flow(X_train, seed=seed, batch_size=batch_size)
mask_generator = mask_datagen.flow(Y_train, seed=seed, batch_size=batch_size)
def TrainGenerator(train_generator,train_generator1):
while True:
xy = train_generator.next()
xy1 = train_generator1.next()
yield (xy,xy1)
train_generator = TrainGenerator(image_generator, mask_generator)
#class_weight = class_weight.compute_class_weight('balanced', np.unique(np.ravel(Y_train,order='C')), np.ravel(Y_train,order='C'))
#print(model.summary())
parallel_model.fit_generator(train_generator, steps_per_epoch=100, epochs=100, callbacks=callbacks, validation_data=(X_val, Y_val))
# Evaluate performance on test set
preds = parallel_model.evaluate(x=X_test, y=Y_test) # Evaluate model's performance on the test set
print("Test set loss = " + str(preds[0]))
print("Test set accuracy = " + str(preds[1]))
print("Test set dice = " + str(preds[2]))
print("Test set recall = " + str(preds[3]))
print("Test set precision = " + str(preds[4]))
print("Test set specificity = " + str(preds[5]))
# Save model weights
if NUM_GPUS >= 2:
model.save('./models/setD_model_unet.h5')
else:
parallel_model.save('./models/model_unet' + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + '.h5')