Skip to content
forked from thunlp/WantWords

An open-source online reverse dictionary.

Notifications You must be signed in to change notification settings

lgengsy/WantWords

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

|En

WantWords Logo

An Open-source Online Reverse Dictionary [link]

News

The WantWords MiniProgram has been launched. Welcome to scan the following QR code to try it!

MiniProgram QR code

What Is a Reverse Dictionary?

Opposite to a regular (forward) dictionary that provides definitions for query words, a reverse dictionary returns words semantically matching the query descriptions.

rd_example

What Can a Reverse Dictionary Do?

  • Solve the tip-of-the-tongue problem, the phenomenon of failing to retrieve a word from memory
  • Help new language learners
  • Help word selection (or word dictionary) anomia patients, people who can recognize and describe an object but fail to name it due to neurological disorder

Our System

Workflow

workflow

Core Model

The core model of WantWords is based on our proposed Multi-channel Reverse Dictionary Model [paper] [code], as illustrate in the following figure.

model

Pre-trained Models and Data

You can download and decompress the pre-trained models and data to BASE_PATH/website_RD/ to reimplement the system.

Key Requirements

  • Django==2.2.5
  • django-cors-headers==3.5.0
  • numpy==1.17.2
  • pytorch-transformers==1.2.0
  • requests==2.22.0
  • scikit-learn==0.22.1
  • scipy==1.4.1
  • thulac==0.2.0
  • torch==1.2.0
  • urllib3==1.25.6
  • uWSGI==2.0.18
  • uwsgitop==0.11

Cite

If the code or data help you, please cite the following two papers.

@inproceedings{qi2020wantwords,
  title={WantWords: An Open-source Online Reverse Dictionary System},
  author={Qi, Fanchao and Zhang, Lei and Yang, Yanhui and Liu, Zhiyuan and Sun, Maosong},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  pages={175--181},
  year={2020}
}

@inproceedings{zhang2020multi,
  title={Multi-channel reverse dictionary model},
  author={Zhang, Lei and Qi, Fanchao and Liu, Zhiyuan and Wang, Yasheng and Liu, Qun and Sun, Maosong},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  pages={312--319},
  year={2020}
}

About

An open-source online reverse dictionary.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 44.1%
  • HTML 40.5%
  • Python 15.0%
  • CSS 0.4%