-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-atari_lz5.py
642 lines (549 loc) · 24.1 KB
/
train-atari_lz5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: train-atari_lz5.py
# Author: Yuxin Wu <[email protected]>
import numpy as np
import os
import sys
import time
import random
import uuid
import argparse
import multiprocessing
import threading
import pickle
import cv2
import tensorflow as tf
import six
from six.moves import queue
import zmq
from tensorpack import *
from tensorpack.utils.concurrency import *
from tensorpack.utils.serialize import *
from tensorpack.utils.stats import *
from tensorpack.tfutils import symbolic_functions as symbf
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
from tensorpack.tfutils.gradproc import MapGradient, SummaryGradient
from tensorpack.tfutils import collection
from tensorpack.RL import *
from simulator_lz3 import *
import common
from common import (play_model, Evaluator, eval_model_multithread,
play_one_episode, play_n_episodes)
from pseudocount_lz4 import PSC
from tensorpack.RL.gymenv import GymEnv
if six.PY3:
from concurrent import futures
CancelledError = futures.CancelledError
else:
CancelledError = Exception
IMAGE_SIZE = (84, 84)
FRAME_HISTORY = 4
GAMMA = 0.99
LAM = 0.95
CHANNEL = FRAME_HISTORY
IMAGE_SHAPE3 = IMAGE_SIZE + (CHANNEL,)
LOCAL_TIME_MAX = 5
STEPS_PER_EPOCH = 6000
EVAL_EPISODE = 2
BATCH_SIZE = 128
PREDICT_BATCH_SIZE = 15 # batch for efficient forward
SIMULATOR_PROC = 50
PREDICTOR_THREAD_PER_GPU = 3
PREDICTOR_THREAD = None
NUM_ACTIONS = None
ENV_NAME = None
NETWORK_ARCH = None # network architecture
PSC_COLOR_MAX = 256
PSC_IMAGE_SIZE = (42, 42)
FILENAME = 'psc_data.pkl'
WINDOW_SIZE = 500 # sliding window size
DEFAULT_PROB = 0.01 # @lezhang.thu
DECAY_FACTOR = 0.99
CLIP_PARAM = 0.1
AVG_UPDATE_ALPHA = 0.99
TRUST_REGION_DELTA = 1.0
def get_player(viz=False, train=False, dumpdir=None, require_gym=False):
pl = GymEnv(ENV_NAME, viz=viz, dumpdir=dumpdir)
gym_pl = pl
def resize(img):
return cv2.resize(img, IMAGE_SIZE)
def grey(img):
# img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# @lezhang.thu
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = resize(img)
img = img[:, :, np.newaxis]
return img.astype(np.uint8) # to save some memory
pl = MapPlayerState(pl, grey)
global NUM_ACTIONS
NUM_ACTIONS = pl.get_action_space().num_actions()
pl = HistoryFramePlayer(pl, FRAME_HISTORY)
if not train:
pl = PreventStuckPlayer(pl, 30, 1)
else:
pl = LimitLengthPlayer(pl, 60000)
if require_gym: return pl, gym_pl
return pl
class Model(ModelDesc):
def _get_inputs(self):
assert NUM_ACTIONS is not None
return [
InputDesc(tf.uint8, (None,) + IMAGE_SHAPE3, 'state'),
InputDesc(tf.int64, (None,), 'action'),
InputDesc(tf.float32, (None,), 'action_prob'),
InputDesc(tf.float32, (None,), 'value'),
InputDesc(tf.float32, (None,), 'gaelam'),
InputDesc(tf.float32, (None,), 'tdlamret'),
InputDesc(tf.float32, (None,), 'weight'),
]
# decorate the function
@auto_reuse_variable_scope
def get_NN_prediction(self, image, require_value=False):
return self._get_NN_prediction(image, require_value)
def _get_NN_prediction(self, image, require_value):
image = tf.cast(image, tf.float32) / 255.0
with argscope(Conv2D, nl=tf.nn.relu):
if NETWORK_ARCH == 'tensorpack':
l = Conv2D('conv0', image, out_channel=32, kernel_shape=5)
l = MaxPooling('pool0', l, 2)
l = Conv2D('conv1', l, out_channel=32, kernel_shape=5)
l = MaxPooling('pool1', l, 2)
l = Conv2D('conv2', l, out_channel=64, kernel_shape=4)
l = MaxPooling('pool2', l, 2)
l = Conv2D('conv3', l, out_channel=64, kernel_shape=3)
elif NETWORK_ARCH == 'nature':
l = Conv2D('conv0', image, out_channel=32, kernel_shape=8, stride=4)
l = Conv2D('conv1', l, out_channel=64, kernel_shape=4, stride=2)
l = Conv2D('conv2', l, out_channel=64, kernel_shape=3)
l = FullyConnected('fc0', l, 512, nl=tf.identity)
l = PReLU('prelu', l)
logits = FullyConnected('fc-pi', l, out_dim=NUM_ACTIONS, nl=tf.identity) # unnormalized policy
if required_value:
value = FullyConnected('fc-v', l, 1, nl=tf.identity)
return logits, value
return logits
def _build_graph(self, inputs):
state, action, oldpi, vpred_old, atarg, ret, weight = inputs
logits, self.value = self.get_NN_prediction(state, require_value=True)
self.value = tf.squeeze(self.value, [1], name='pred_value') # (B,)
self.policy = tf.nn.softmax(logits, name='policy')
is_training = get_current_tower_context().is_training
if not is_training:
return
log_probs = tf.log(self.policy + 1e-6)
pi = tf.reduce_sum(self.policy * tf.one_hot(action, NUM_ACTIONS), 1) # (B,)
ratio = pi / (oldpi + 1e-8) # pnew / pold
clip_param = tf.get_variable(
'clip_param', shape=[],
initializer=tf.constant_initializer(CLIP_PARAM), trainable=False)
surr1 = ratio * atarg # surrogate from conservative policy iteration
surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg
"""PPO's pessimistic surrogate (L^CLIP)"""
# @lezhang.thu
pol_surr = tf.reduce_sum(tf.minimum(surr1, surr2))
vfloss1 = tf.square(self.value - ret)
vpredclipped = vpred_old + \
tf.clip_by_value(self.value - vpred_old, -clip_param, clip_param)
vfloss2 = tf.square(vpredclipped - ret)
"""we do the same clipping-based trust region for the value function"""
vf_loss = .5 * tf.reduce_sum(weight * tf.maximum(vfloss1, vfloss2))
xentropy_loss = tf.reduce_sum(
self.policy * log_probs, name='xentropy_loss')
pred_reward = tf.reduce_mean(self.value, name='predict_reward')
advantage = symbf.rms(atarg, name='rms_advantage')
entropy_beta = tf.get_variable(
'entropy_beta', shape=[],
initializer=tf.constant_initializer(0.01), trainable=False)
# @lezhang.thu
with tf.variable_scope('average'):
policy_avg = tf.nn.softmax(self.get_NN_prediction(state), name='policy_avg')
"""(B, policy_avg's prob. vector / self.policy's prob. vector)"""
grad_klavgnew = - policy_avg / (self.policy + 1e-8)
"""(B, prob. vector of self.policy)"""
grad_pol_surr = tf.gradients(pol_surr, self.policy)
constraint = tf.reduce_sum(grad_klavgnew * grad_pol_surr,
axis=1, keep_dims=True) - TRUST_REGION_DELTA
modify = tf.maximum(
0.0,
constraint / tf.reduce_sum(tf.square(grad_klavgnew),
axis=1, keep_dims=True)) * grad_klavgnew
z_star = grad_pol_surr - modify
z_star = tf.stop_gradient(z_star)
policy_loss = tf.reduce_sum(-z_star * self.policy, name='policy_loss')
self.cost = tf.add_n([policy_loss, xentropy_loss * entropy_beta, vf_loss])
self.cost = tf.truediv(self.cost,
tf.cast(tf.shape(weight)[0], tf.float32),
name='cost')
summary.add_moving_summary(policy_loss, xentropy_loss,
vf_loss, pred_reward, advantage,
self.cost)
def _get_optimizer(self):
lr = symbf.get_scalar_var('learning_rate', 0.001, summary=True)
opt = tf.train.AdamOptimizer(lr, epsilon=1e-3)
gradprocs = [MapGradient(lambda grad: tf.clip_by_average_norm(grad, 0.1)),
SummaryGradient()]
opt = optimizer.apply_grad_processors(opt, gradprocs)
return opt
@staticmethod
def update_avg_param():
vars = tf.global_variables()
ops = []
G = tf.get_default_graph()
for v in vars:
avg_name = v.op.name
if avg_name.startswith('average'):
new_name = avg_name.replace('average/', '')
logger.info("{} <- {}".format(avg_name, new_name))
ops.append(v.assign(AVG_UPDATE_ALPHA * v +
(1 - AVG_UPDATE_ALPHA) * G.get_tensor_by_name(new_name + ':0')))
return tf.group(*ops, name='update_avg_network')
class MySimulatorWorker(SimulatorProcess):
def __init__(self, idx, pipe_c2s, pipe_s2c, joint_info, dirname):
super(MySimulatorWorker, self).__init__(idx, pipe_c2s, pipe_s2c)
self.psc = PSC(PSC_IMAGE_SIZE, PSC_COLOR_MAX)
self.lock = joint_info['lock']
self.updated = joint_info['updated']
self.sync_steps = joint_info['sync_steps']
self.file_path = os.path.join(dirname, FILENAME)
if os.path.isfile(self.file_path):
self._read_joint()
# self._init_window()
def _init_window(self):
self.w = {
'probs': np.array([DEFAULT_PROB for _ in range(WINDOW_SIZE)],
dtype=np.float32),
'valid': [False for _ in range(WINDOW_SIZE)],
'index': 0,
'value': np.zeros(WINDOW_SIZE, dtype=np.float32),
'reward': np.zeros(WINDOW_SIZE, dtype=np.float32)
}
def _get_sample(self, bootstrap):
sample_probs = self.w['probs'] / np.sum(self.w['probs'])
sample_idx = np.random.choice(len(self.w['probs']), p=sample_probs)
if not self.w['valid'][sample_idx]:
return -1, None, None, None
else:
value, gaelam = self._get_return(sample_idx, bootstrap)
return sample_idx, \
np.amin(self.w['probs']) / self.w['probs'][sample_idx], \
value, gaelam
def _get_return(self, sample_idx, bootstrap):
"""invariant: gaelam corresponds to k's gae"""
k = self.w['index']
gaelam = self.w['reward'][k] + GAMMA * bootstrap - self.w['value'][k]
vpred_kp1 = self.w['value'][k]
while k != sample_idx:
k = k - 1 if k > 0 else WINDOW_SIZE - 1
"""vpred_kp1 is \hat{v}(S_k+1, w)"""
delta = self.w['reward'][k] + GAMMA * vpred_kp1 - self.w['value'][k]
gaelam = delta + GAMMA * LAM * gaelam
vpred_kp1 = self.w['value'][k]
return vpred_kp1, gaelam
def _update_window(self, reward, value, reward_found):
self.w['index'] = (self.w['index'] + 1) % WINDOW_SIZE
k = self.w['index']
self.w['valid'][k] = True
self.w['value'][k] = value # \hat{v}(S_t, w)
self.w['reward'][k] = reward # R_t+1
self.w['probs'][k] = DEFAULT_PROB
if reward_found:
# update probs
decay_prob = 1.0
n = 0
# invariant: n is the number of slots visited
while n < WINDOW_SIZE and self.w['valid'][k]:
self.w['probs'][k] += decay_prob
k = k - 1 if k > 0 else WINDOW_SIZE - 1
decay_prob *= DECAY_FACTOR
n += 1
def _episode_over_sample(self, c2s_socket):
k = (self.w['index'] + 1) % WINDOW_SIZE
# last just in window, it needs WINDOW_SIZE samplings
for _ in range(WINDOW_SIZE):
for _ in range(SAMPLE_STRENGTH):
idx, weight, value, gaelam = self._get_sample(0.0)
if idx != -1:
c2s_socket.send(dumps(
(self.identity, 'feed', idx, weight, value, gaelam)),
copy=False) # feed a sampled transition
self.w['valid'][k] = False # the window is sliding away
self.w['probs'][k] = DEFAULT_PROB
k = (k + 1) % WINDOW_SIZE
def _feed_transition(self, bootstrap, c2s_socket):
for _ in range(SAMPLE_STRENGTH):
idx, weight, value, gaelam = self._get_sample(bootstrap)
if idx != -1:
c2s_socket.send(dumps(
(self.identity, 'feed', idx, weight, value, gaelam)),
copy=False) # feed a sampled transition
def run(self):
player, gym_pl = self._build_player()
context = zmq.Context()
c2s_socket = context.socket(zmq.PUSH)
c2s_socket.setsockopt(zmq.IDENTITY, self.identity)
c2s_socket.set_hwm(2)
c2s_socket.connect(self.c2s)
s2c_socket = context.socket(zmq.DEALER)
s2c_socket.setsockopt(zmq.IDENTITY, self.identity)
# s2c_socket.set_hwm(5)
s2c_socket.connect(self.s2c)
state = player.current_state() # S_0
reward = None # R_0 serves as dummy
# loop invariant: S_t. Start: t=0.
n = 0 # n is t
while True:
c2s_socket.send(dumps(
# last component is is_over
(self.identity, 'request', state, reward, False)),
copy=False) # require A_t
action, value = loads(s2c_socket.recv(copy=False).bytes) # A_t, \hat{v}(S_t, w)
# self._feed_transition(value, c2s_socket) # as we have \hat{v}(S_t, w)
reward, is_over = player.action(action) # get R_{t+1}
"""Bin reward to {+1, 0, -1} by its sign."""
reward = np.sign(reward)
if is_over:
c2s_socket.send(dumps(
(self.identity, 'request', None, reward, True)),
copy=False) # worker requires no action
# self._update_window(reward, value, reward != 0)
# self._episode_over_sample(c2s_socket)
state = player.current_state() # S_0
reward = None # for the auto-restart state
else:
"""assume S_t-1 etc. is okay, i.e. in the window,
here, S_t gets its info.:
R_t+1, \hat{v}(S_t, w).
this is the invariant."""
reward_found = reward != 0
state = player.current_state() # S_{t+1}
gym_frame = gym_pl.current_state() # S_{t+1}'s frame
reward += self.psc.psc_reward(gym_frame)
# self._update_window(reward, value, reward_found)
n += 1
self._update_joint(n)
def _update_joint(self, n):
if n % self.sync_steps == 0:
self._write_joint()
self._read_joint()
def _write_joint(self):
with self.lock:
if self.updated[self.idx] == 1:
return
raw_data = pickle.dumps(self.psc.get_state())
with open(self.file_path, 'wb') as f:
f.write(raw_data)
for i in range(len(self.updated)):
self.updated[i] = 1
def _read_joint(self):
with open(self.file_path, 'rb') as f:
raw_data = f.read()
self.psc.set_state(pickle.loads(raw_data))
self.updated[self.idx] = 0
def _build_player(self):
return get_player(train=True, require_gym=True)
class MySimulatorMaster(SimulatorMaster, Callback):
def __init__(self, pipe_c2s, pipe_s2c, model):
super(MySimulatorMaster, self).__init__(pipe_c2s, pipe_s2c)
self.M = model
self.queue = queue.Queue(maxsize=BATCH_SIZE * 8 * 2 * LOCAL_TIME_MAX)
from collections import defaultdict
self.windows = defaultdict(lambda:
{'window': [None for _ in range(WINDOW_SIZE)],
'buffer': None,
'index': 0})
def _setup_graph(self):
self.async_predictor = MultiThreadAsyncPredictor(
self.trainer.get_predictors(['state'], ['policy', 'pred_value'],
PREDICTOR_THREAD), batch_size=PREDICT_BATCH_SIZE)
def _before_train(self):
self.async_predictor.start()
def _slide_window(self, ident, transition):
w = self.windows[ident]
if w['buffer'] is not None:
w['index'] = (w['index'] + 1) % WINDOW_SIZE
w['window'][w['index']] = w['buffer']
w['buffer'] = transition
def _window_sample(self, ident, idx, weight, value, gaelam):
w = self.windows[ident]
# self.queue.put(w['window'][idx] + [value, gaelam, weight])
def _on_state(self, state, ident):
def cb(outputs):
try:
distrib, value = outputs.result() # value = \hat{v}(S_t, w)
except CancelledError:
logger.info("Client {} cancelled.".format(ident))
return
assert np.all(np.isfinite(distrib)), distrib
action = np.random.choice(len(distrib), p=distrib)
client = self.clients[ident]
# state = S_t, action = A_t, value = \hat{v}(S_t, w)
client.memory.append(TransitionExperience(
state, action, reward=None, value=value, prob=distrib[action]))
self._slide_window(ident, [state, action, distrib[action]])
# feedback A_t, \hat{v}(S_t, w)
self.send_queue.put([ident, dumps((action, value))])
self.async_predictor.put_task([state], cb) # state = S_t
def _on_episode_over(self, ident):
# self._parse_memory(0.0, ident, True)
# @lezhang.thu
client = self.clients[ident]
client.prev_episode.clear()
client.memory.reverse()
"""vpred_tp1 is \hat{v}(S_t+1, w)"""
vpred_tp1 = 0.0
gaelam = 0.0
for idx, k in enumerate(client.memory):
"""k.value is \hat{v}(S_t, w)"""
delta = k.reward + GAMMA * vpred_tp1 - k.value
gaelam = delta + GAMMA * LAM * gaelam
"""tdlamret is gaelam + \hat{v}(S_t, w)"""
client.prev_episode.append(
[k.state, k.action, k.prob, k.value, gaelam, gaelam + k.value, 1.0])
vpred_tp1 = k.value
"""client.prev_episode[k][4] is gaelam, i.e. adv"""
atarg = [client.prev_episode[k][4] for k in range(len(client.prev_episode))]
atarg = np.asarray(atarg)
"""standardized advantage function estimate"""
atarg = (atarg - atarg.mean()) / atarg.std()
for k in range(len(client.prev_episode)):
client.prev_episode[k][4] = atarg[k]
client.memory.clear() # remember!
def _on_datapoint(self, ident):
client = self.clients[ident]
if len(client.prev_episode) == 0:
return
idxes = [
random.randint(0, len(client.prev_episode) - 1)
for _ in range(LOCAL_TIME_MAX)]
for k in idxes:
self.queue.put(client.prev_episode[k])
def _parse_memory(self, init_v, ident, is_over):
client = self.clients[ident]
mem = client.memory
if not is_over:
last = mem[-1]
mem = mem[:-1]
mem.reverse()
"""vpred_tp1 is \hat{v}(S_t+1, w)"""
vpred_tp1 = init_v
gaelam = 0.0
for idx, k in enumerate(mem):
"""k.value is \hat{v}(S_t, w)"""
delta = k.reward + GAMMA * vpred_tp1 - k.value
gaelam = delta + GAMMA * LAM * gaelam
"""tdlamret is gaelam + \hat{v}(S_t, w)"""
self.queue.put([k.state, k.action, k.prob, k.value, gaelam, gaelam + k.value, 1.0])
vpred_tp1 = k.value
client.memory = [] if is_over else [last]
def get_shared_mem(num_proc):
import ctypes
from multiprocessing.sharedctypes import RawArray
from multiprocessing import Lock
sync_steps = STEPS_PER_EPOCH * BATCH_SIZE // num_proc
return {
'lock': Lock(),
# initially zeroed
'updated': RawArray(ctypes.c_int, num_proc),
'sync_steps': sync_steps}
def get_config():
dirname = os.path.join('train_log', 'train-lezhang-5-{}'.format(ENV_NAME))
logger.set_logger_dir(dirname)
M = Model()
joint_info = get_shared_mem(SIMULATOR_PROC)
name_base = str(uuid.uuid1())[:6]
PIPE_DIR = os.environ.get('TENSORPACK_PIPEDIR', '.').rstrip('/')
namec2s = 'ipc://{}/sim-c2s-{}'.format(PIPE_DIR, name_base)
names2c = 'ipc://{}/sim-s2c-{}'.format(PIPE_DIR, name_base)
procs = [MySimulatorWorker(k, namec2s, names2c, joint_info, dirname) for k in range(SIMULATOR_PROC)]
ensure_proc_terminate(procs)
start_proc_mask_signal(procs)
master = MySimulatorMaster(namec2s, names2c, M)
dataflow = BatchData(DataFromQueue(master.queue), BATCH_SIZE)
return TrainConfig(
model=M,
dataflow=dataflow,
callbacks=[
ModelSaver(),
# @lezhang.thu
PeriodicTrigger(
RunOp(Model.update_avg_param, verbose=True),
every_k_steps=1), # update average network every step
ScheduledHyperParamSetter('learning_rate', [(20, 0.0003), (120, 0.0001)]),
ScheduledHyperParamSetter('entropy_beta', [(80, 0.005)]),
HumanHyperParamSetter('learning_rate'),
HumanHyperParamSetter('entropy_beta'),
# @lezhang.thu
ScheduledHyperParamSetter('clip_param', [(0, CLIP_PARAM), (1000, 0.0)], interp='linear'),
master,
StartProcOrThread(master),
PeriodicTrigger(Evaluator(
EVAL_EPISODE, ['state'], ['policy'], get_player),
every_k_epochs=6),
],
session_creator=sesscreate.NewSessionCreator(
config=get_default_sess_config(0.5)),
steps_per_epoch=STEPS_PER_EPOCH,
max_epoch=1000,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--env', help='env', required=True)
parser.add_argument('--task', help='task to perform',
choices=['play', 'eval', 'train', 'gen_submit'], default='train')
parser.add_argument('--output', help='output directory for submission', default='output_dir')
parser.add_argument('--episode', help='number of episode to eval',
default=100, type=int)
parser.add_argument('--network', help='network architecture', choices=['nature', 'tensorpack'],
default='nature')
args = parser.parse_args()
ENV_NAME = args.env
logger.info("Environment Name: {}".format(ENV_NAME))
NUM_ACTIONS = get_player().get_action_space().num_actions()
logger.info("Number of actions: {}".format(NUM_ACTIONS))
NETWORK_ARCH = args.network
logger.info("Using network architecutre: " + NETWORK_ARCH)
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.task != 'train':
assert args.load is not None
cfg = PredictConfig(
model=Model(),
session_init=get_model_loader(args.load),
input_names=['state'],
output_names=['policy'])
if args.task == 'play':
play_model(cfg, get_player(viz=0.01))
elif args.task == 'eval':
eval_model_multithread(cfg, args.episode, get_player)
elif args.task == 'gen_submit':
play_n_episodes(
get_player(train=False, dumpdir=args.output),
OfflinePredictor(cfg), args.episode)
# gym.upload(output, api_key='xxx')
else:
nr_gpu = get_nr_gpu()
if nr_gpu > 0:
if nr_gpu > 1:
predict_tower = list(range(nr_gpu))[-nr_gpu // 2:]
else:
predict_tower = [0]
PREDICTOR_THREAD = len(predict_tower) * PREDICTOR_THREAD_PER_GPU
train_tower = list(range(nr_gpu))[:-nr_gpu // 2] or [0]
logger.info("[BA3C] Train on gpu {} and infer on gpu {}".format(
','.join(map(str, train_tower)), ','.join(map(str, predict_tower))))
trainer = AsyncMultiGPUTrainer
else:
logger.warn("Without GPU this model will never learn! CPU is only useful for debug.")
nr_gpu = 0
PREDICTOR_THREAD = 1
predict_tower, train_tower = [0], [0]
trainer = QueueInputTrainer
config = get_config()
if args.load:
config.session_init = get_model_loader(args.load)
config.tower = train_tower
config.predict_tower = predict_tower
trainer(config).train()