forked from glormph/nf-core-labelcheck
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.nf
778 lines (635 loc) · 27 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
#!/usr/bin/env nextflow
/*
========================================================================================
lehtiolab/nf-labelcheck
========================================================================================
lehtiolab/nf-labelcheck Analysis Pipeline.
#### Homepage / Documentation
https://github.com/lehtiolab/nf-labelcheck
----------------------------------------------------------------------------------------
*/
nextflow.enable.dsl = 1
def helpMessage() {
log.info nfcoreHeader()
log.info"""
Usage:
The typical command for running the pipeline is as follows:
nextflow run lehtiolab/nf-labelcheck --mzmls '*.mzML' --tdb swissprot.fa --mods assets/mods.txt -profile docker
Mandatory arguments:
--input Path to file containing list of mzMLs, tab separated, either:
filepath -tab- instrument -tab- setname -tab- channel
OR (for pooled LC):
filepath -tab- instrument -tab- setname
--tdb Path to target FASTA protein database
--isobaric VALUE In case of isobaric, specify: tmt10plex, tmt6plex, itraq8plex, itraq4plex, tmt16plex, tmt18plex
-profile Configuration profile to use. Can use multiple (comma separated)
Available: conda, docker, singularity, awsbatch, test and more.
Optional arguments:
--sampletable Tab-separated file detailing the samples in the mzMLs per channel
--mods Path to MSGF+ modification file (default in assets folder)
--activation VALUE Specify activation filtering for isobaric quant: auto (DEFAULT, hcd/hcid),
hcd, cid, etd, or any (no filter)
quantification. Not necessary for other functionality.
--maxmissedcleavages Max amount of missed cleavages to report (default 4)
Other options:
--outdir The output directory where the results will be saved
--email Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits
-name Name for the pipeline run. If not specified, Nextflow will automatically generate a random mnemonic.
AWSBatch options:
--awsqueue The AWSBatch JobQueue that needs to be set when running on AWSBatch
--awsregion The AWS Region for your AWS Batch job to run on
""".stripIndent()
}
/*
* SET UP CONFIGURATION VARIABLES
*/
// Show help message
if (params.help){
helpMessage()
exit 0
}
// Has the run name been specified by the user?
// this has the bonus effect of catching both -name and --name
custom_runName = params.name
if( !(workflow.runName ==~ /[a-z]+_[a-z]+/) ){
custom_runName = workflow.runName
}
if( workflow.profile == 'awsbatch') {
// AWSBatch sanity checking
if (!params.awsqueue || !params.awsregion) exit 1, "Specify correct --awsqueue and --awsregion parameters on AWSBatch!"
// Check outdir paths to be S3 buckets if running on AWSBatch
// related: https://github.com/nextflow-io/nextflow/issues/813
if (!params.outdir.startsWith('s3:')) exit 1, "Outdir not on S3 - specify S3 Bucket to run on AWSBatch!"
// Prevent trace files to be stored on S3 since S3 does not support rolling files.
if (workflow.tracedir.startsWith('s3:')) exit 1, "Specify a local tracedir or run without trace! S3 cannot be used for tracefiles."
}
// Stage config files
ch_output_docs = Channel.fromPath("$baseDir/docs/output.md")
params.name = false
params.email = false
params.plaintext_email = false
params.iput = false
params.sampletable = false
params.isobaric = false
params.activation = 'auto' // Only for isobaric quantification, not for ID with MSGF
params.outdir = 'results'
params.mods = "${baseDir}/assets/mods.txt"
params.psmconflvl = 0.01
params.pepconflvl = 0.01
params.maxmissedcleavages = 2
// Validate and set inputs
if (!params.isobaric) exit 1, "Isobaric type needs to be specified"
isobaric = params.isobaric == 'tmtpro' ? 'tmt16plex': params.isobaric
plextype = isobaric.replaceFirst(/[0-9]+plex/, "")
mods = file(params.mods)
if( !mods.exists() ) exit 1, "Modification file not found: ${params.mods}"
tdb = file(params.tdb)
if( !tdb.exists() ) exit 1, "Target fasta DB file not found: ${params.tdb}"
maxmiscleav = params.maxmissedcleavages > -1 ? params.maxmissedcleavages : 1000
output_docs = file("$baseDir/docs/output.md")
// set constant variables
accolmap = [peptides: 12]
plexmap = [tmt10plex: ["TMT6plex", 229.162932],
tmt6plex: ["TMT6plex", 229.162932],
tmt16plex: ["TMTpro", 304.207146],
tmt18plex: ["TMTpro", 304.207146],
itraq8plex: ["iTRAQ8plex", 304.205360],
itraq4plex: ["iTRAQ4plex", 144.102063],
]
// Header log info
log.info nfcoreHeader()
def summary = [:]
if(workflow.revision) summary['Pipeline Release'] = workflow.revision
summary['Run Name'] = custom_runName ?: workflow.runName
summary['mzMLs or input definition'] = params.input ? params.input : params.mzmls
summary['Sample table'] = params.sampletable
summary['Target DB'] = params.tdb
summary['Modifications'] = params.mods
summary['Isobaric tags'] = params.isobaric
summary['Isobaric activation'] = params.activation
summary['Max Resources'] = "$params.max_memory memory, $params.max_cpus cpus, $params.max_time time per job"
if(workflow.containerEngine) summary['Container'] = "$workflow.containerEngine - $workflow.container"
summary['Output dir'] = params.outdir
summary['Launch dir'] = workflow.launchDir
summary['Working dir'] = workflow.workDir
summary['Script dir'] = workflow.projectDir
summary['User'] = workflow.userName
if(workflow.profile == 'awsbatch'){
summary['AWS Region'] = params.awsregion
summary['AWS Queue'] = params.awsqueue
}
summary['Config Profile'] = workflow.profile
if(params.config_profile_description) summary['Config Description'] = params.config_profile_description
if(params.config_profile_contact) summary['Config Contact'] = params.config_profile_contact
if(params.config_profile_url) summary['Config URL'] = params.config_profile_url
if(params.email) {
summary['E-mail Address'] = params.email
}
log.info summary.collect { k,v -> "${k.padRight(18)}: $v" }.join("\n")
log.info "\033[2m----------------------------------------------------\033[0m"
// Check the hostnames against configured profiles
checkHostname()
def create_workflow_summary(summary) {
def yaml_file = workDir.resolve('workflow_summary_mqc.yaml')
yaml_file.text = """
id: 'nf-labelcheck-summary'
description: " - this information is collected when the pipeline is started."
section_name: 'lehtiolab/nf-labelcheck Workflow Summary'
section_href: 'https://github.com/lehtiolab/nf-labelcheck'
plot_type: 'html'
data: |
<dl class=\"dl-horizontal\">
${summary.collect { k,v -> " <dt>$k</dt><dd><samp>${v ?: '<span style=\"color:#999999;\">N/A</a>'}</samp></dd>" }.join("\n")}
</dl>
""".stripIndent()
return yaml_file
}
/*
* Parse software version numbers
*/
process get_software_versions {
publishDir "${params.outdir}/pipeline_info", mode: 'copy',
saveAs: {filename ->
if (filename.indexOf(".csv") > 0) filename
else null
}
output:
file 'software_versions_mqc.yaml' into software_versions_yaml
file "software_versions.csv"
script:
"""
echo $workflow.manifest.version > v_pipeline.txt
echo $workflow.nextflow.version > v_nextflow.txt
msgf_plus | head -n1 > v_msgf.txt
percolator -h |& head -n1 > v_perco.txt || true
msstitch --version > v_mss.txt
echo 2.9.1 > v_openms.txt
scrape_software_versions.py &> software_versions_mqc.yaml
"""
}
pooled = false
if (params.input) {
pooled_header = ['mzmlfile', 'instrument', 'setname']
single_header = ['mzmlfile', 'instrument', 'setname', 'channel']
mzmllines = file("${params.input}").readLines().collect { it.tokenize('\t') }
if (mzmllines[0] == pooled_header) {
pooled = true
Channel.from(mzmllines[1..-1])
.tap { mzml_in }
.map { it -> it[2] } // setname
.unique()
.set { uni_sets }
} else if (mzmllines[0] == single_header) {
Channel.from(mzmllines[1..-1])
.tap { mzml_channels; mzml_samples }
.map { it[0..-2] }
.tap { mzml_in }
.map { it -> it[2] } // setname
.unique()
.set { uni_sets }
} else {
exit 1, 'Input file (--input) format should be in the form of a tab separated file with a header'
}
}
// Create mzml input: [file, filename, channels, samples]
if (params.sampletable) {
Channel
.from(file(params.sampletable).readLines())
.map { it -> it.tokenize('\t') }
// make sample table interop with ddamsproteomics
// if any more info than set/channel/sample is entered, remove it
.map { it -> [it[1], it[0], it[2]] }
.groupTuple()
.into { prechannels; presamples; input_order_sets_or_fns }
prechannels
.map { [it[0], it[1]] }
.set { channels }
presamples
.map { [it[0], it[2]] }
.set { samples }
} else if (!pooled) {
mzml_channels
.map { [file("${it[0]}.tsv").baseName, it[3]] }
.into{ channels; input_order_sets_or_fns }
mzml_samples
.map { it -> [file("${it[0]}.tsv").baseName, 'NA'] }
.set{ samples }
} else {
uni_sets
.map { it -> [it, 'NA'] }
.into { channels; samples; input_order_sets_or_fns }
}
mzml_in
.map { it -> [file(it[0]).baseName, file(it[0]), it[1], it[2]] }
.tap { mzml_msgf; mzml_quant }
.toList()
.map { it.sort( {a, b -> a[1] <=> b[1]}) } // sort on sample for consistent .sh script in -resume
// Cannot transpose because when there is only one file it flattens the list
.map { it -> [it.collect() { it[0] }, it.collect() { it[1] }, it.collect() { it[3]} ] } // lists: [basefns], [mzmlfiles], [setnames]
.set{ mzmlfiles_all }
process isobaricQuant {
container "${workflow.containerEngine == 'singularity' && !task.ext.singularity_pull_docker_container ?
'https://depot.galaxyproject.org/singularity/openms:2.9.1--h135471a_1' :
'quay.io/biocontainers/openms:2.9.1--h135471a_1'}"
input:
set val(filename), file(infile), val(instrument), val(setname) from mzml_quant
output:
set val(filename), file("${infile}.consensusXML") into isobaricxml
script:
activationtype = [auto: 'auto', any: 'any', hcd:'beam-type collision-induced dissociation', cid:'Collision-induced dissociation', etd:'Electron transfer dissociation'][params.activation]
massshift = [tmt:0.0013, itraq:0.00125][plextype]
"""
IsobaricAnalyzer -type $isobaric -in $infile -out \"${infile}.consensusXML\" -extraction:select_activation \"$activationtype\" -extraction:reporter_mass_shift $massshift -extraction:min_precursor_intensity 1.0 -extraction:keep_unannotated_precursor true -quantification:isotope_correction true
"""
}
process createNewSpectraLookup {
input:
set val(filenames), file(mzmlfiles), val(setnames) from mzmlfiles_all
output:
file 'mslookup_db.sqlite' into speclookup
script:
"""
msstitch storespectra --spectra ${mzmlfiles.join(' ')} --setnames ${setnames.join(' ')}
"""
}
// Collect all isobaric quant XML output for quant lookup building process
isobaricxml
.toList()
.map { it.sort({a, b -> a[0] <=> b[0]}) }
.map { it -> it.collect() { it[1] } }
.set { isofiles_sorted }
process quantLookup {
input:
file lookup from speclookup
file(isofns) from isofiles_sorted
output:
file 'db.sqlite' into quantlookup
script:
"""
# SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume
cat $lookup > db.sqlite
msstitch storequant --dbfile db.sqlite --isobaric ${isofns.join(' ')} --spectra ${isofns.collect{ x -> x.baseName.replaceFirst(/\.consensusXML/, "")}.join(' ')}
"""
}
process createTargetDecoyFasta {
input:
file(tdb)
output:
file('db.fa') into concatdb
script:
"""
msstitch makedecoy -i "$tdb" -o decoy.fa --scramble tryp_rev --ignore-target-hits
cat "$tdb" decoy.fa > db.fa
"""
}
process msgfPlus {
cpus = config.poolSize < 2 ? config.poolSize : 2
input:
set val(filename), path(mzml), val(instrument), val(setname) from mzml_msgf
file(db) from concatdb
file mods
output:
set val(setname), val(filename), file("${filename}.mzid"), file("${filename}.mzid.tsv") into mzids
script:
plex = plexmap[isobaric]
msgfprotocol = 0 //[tmt:4, itraq:2][plextype]
msgfinstrument = [lowres:0, velos:1, qe:3, qehf: 3, false:0, qehfx:1, lumos:1, timstof:2][instrument]
"""
# dynamically add isobaric type to mod file
cat $mods > iso_mods
echo ${plex[1]},*,opt,N-term,${plex[0]} >> iso_mods
echo ${plex[1]},K,opt,any,${plex[0]} >> iso_mods
# run search and create TSV, cleanup afterwards
msgf_plus -Xmx8G -d $db -s $mzml -o "${filename}.mzid" -thread ${task.cpus * 3} -mod iso_mods -tda 0 -t 10.0ppm -ti -1,2 -m 0 -inst ${msgfinstrument} -e 1 -protocol ${msgfprotocol} -ntt 2 -minLength 7 -maxLength 50 -minCharge 2 -maxCharge 6 -n 1 -addFeatures 1 -maxMissedCleavages ${params.maxmissedcleavages}
msgf_plus -Xmx3500M edu.ucsd.msjava.ui.MzIDToTsv -i "${filename}.mzid" -o "${filename}.mzid.tsv"
rm ${db.baseName.replaceFirst(/\.fasta/, "")}.c*
"""
}
// in case we have multiple files per set in the future (you never know), we group by set
mzids
.groupTuple()
.set { mzids_2pin }
process percolator {
input:
set val(setname), val(filenames), path(mzids), path(tsvs) from mzids_2pin
output:
set val(setname), path(outfile) into tmzidtsv_perco
script:
outfile = "${setname}_target.txt"
"""
for mzid in ${mzids.collect() { "'$it'" }.join(' ')}; do echo \${mzid} >> metafile; done
msgf2pin -o percoin.xml -e trypsin -P "decoy_" metafile
percolator -j percoin.xml -X perco.xml -N 500000 --decoy-xml-output
mkdir outtables
msstitch perco2psm --perco perco.xml -i ${tsvs.collect() { "'$it'" }.join(' ')} --mzids ${mzids.collect() { "'$it'" }.join(' ')} --filtpsm 0.01 --filtpep 0.01 -d outtables
msstitch concat -i outtables/* -o psms
msstitch split -i psms --splitcol \$(head -n1 psms | tr '\t' '\n' | grep -n ^TD\$ | cut -f 1 -d':')
mv target.tsv "${outfile}"
"""
}
// Collect percolator data of target and feed into PSM table creation
tmzidtsv_perco
.toList()
.map { it.sort( {a, b -> a[0] <=> b[0]}) } // sort on setname for resumable PSM table
.transpose()
.toList()
.combine(quantlookup)
.set { prepsm }
/*
* Step 3: Post-process peptide identification data
*/
def listify(it) {
/* This function is useful when needing a list even when having a single item
- Single items in channels get unpacked from a list
- Processes expect lists. Even though it would be fine
without a list, for single-item-lists any special characters are not escaped by NF
in the script, which leads to errors. See:
https://github.com/nextflow-io/nextflow/discussions/4240
*/
return it instanceof java.util.List ? it : [it]
}
process createPSMTable {
publishDir "${params.outdir}", mode: 'copy',
saveAs: {filename ->
if (filename == outpsms) filename
else null
}
input:
set val(setnames), path(psms), path('lookup') from prepsm
output:
set val(setnames), path('*.tsv') into setpsmtables
path(outpsms) into outpsms
script:
psmlookup = "psmlookup.sql"
outpsms = "psmtable.txt"
"""
msstitch concat -i ${listify(psms).collect() {"$it"}.join(' ')} -o psms.txt
# SQLite lookup needs copying to not modify the input file which would mess up a rerun with -resume
cat lookup > $psmlookup
msstitch psmtable -i psms.txt --dbfile "$psmlookup" -o "${outpsms}" --addmiscleav --addbioset --isobaric
sed 's/\\#SpecFile/SpectraFile/' -i "${outpsms}"
${pooled ? "msstitch split -i '${outpsms}' --splitcol bioset" : "msstitch split -i '${outpsms}' --splitcol 1"}
"""
}
if (pooled) {
setpsmtables
.transpose()
.join(channels)
.join(samples)
.set { psm_pep }
} else {
setpsmtables
.map { it[1] }
.flatten()
.map { [it.baseName, it] }
.join(channels)
.join(samples)
.set { psm_pep }
}
process psm2Peptides {
input:
set val(set_or_fn), file(psms), val(channels), val(samples) from psm_pep
output:
file("${set_or_fn}_stats.json") into psmmeans
script:
col = accolmap.peptides + 1 // psm2pep adds a column
modweight = Math.round(plexmap[isobaric][1] * 1000) / 1000
"""
# Create peptide table from PSM table, picking best scoring unique peptides
msstitch peptides -i $psms -o "${set_or_fn}.peps" --scorecolpattern svm --spectracol 1 --isobquantcolpattern plex --medianintensity --keep-psms-na-quant
calc_psmstats.py "$psms" "${set_or_fn}.peps" "${set_or_fn}" "${maxmiscleav}" "+${modweight}"
${params.sampletable ? "\"${channels.join(',')}\" \"${samples.join(',')}\"" : ''}
"""
}
// Let user input channel decide order of filenames
psmmeans
.toList()
.transpose()
.toList()
.set { psmdata }
input_order_sets_or_fns
.toList()
.transpose()
.toList()
// .map { it -> [it] } // when merging to keep this a list
.merge(psmdata)
.set { psm_values }
process pooledReportLabelCheck {
publishDir "${params.outdir}", mode: 'copy'
when: pooled
input:
tuple val(ordered_sets), val(ordered_ch), path('means????') from psm_values
output:
path('qc.html')
script:
report = "${baseDir}/assets/pooled_report.html"
"""
#!/usr/bin/env python
from glob import glob
import json
from jinja2 import Template
# Data parsing
ordered_sets = [${ordered_sets.collect() { x -> "'$x'"}.join(',')}]
maxmiss = int(${maxmiscleav})
data = []
for meanfn in glob('means*'):
with open(meanfn) as fp:
data.append(json.load(fp))
data = {x['filename']: x for x in data}
# write to HTML template
with open("${report}") as fp:
main = Template(fp.read())
with open('qc.html', 'w') as fp:
fp.write(main.render(reportname='$custom_runName', filenames=ordered_sets, labeldata=data, maxmiscleav=maxmiss + 1))
"""
}
process nonPooledReportLabelCheck {
publishDir "${params.outdir}", mode: 'copy'
when: !pooled
input:
// name stats files after mzml fns for easy access FIXME
tuple val(ordered_fns), val(ordered_ch), path('means????') from psm_values
output:
path('qc.html')
script:
report = "${baseDir}/assets/nonpooled_report.html"
"""
#!/usr/bin/env python
from glob import glob
import json
from collections import defaultdict
from jinja2 import Template
# Data parsing
ordered_fns = [${ordered_fns.collect() { x -> "'$x'"}.join(',')}]
ordered_chs = [${ordered_ch.collect() { x-> "'$x'"}.join(',')}]
data = []
for meanfn in sorted(glob('means*'), key=lambda x: int(x[x.index('ns')+2:])):
with open(meanfn) as fp:
data.append(json.load(fp))
data = {x['filename']: x for x in data}
# collect tmt mean intensities (keep input sort order for bars)
isomeans = defaultdict(list)
for fn in ordered_fns:
for ch, val in data[fn]['psms'].items():
isomeans[ch].append(val)
channels = sorted([x for x in isomeans.keys()], key=lambda x: x.replace('N', 'A'))
labeldata = {
'psms': {'labeled': [], 'nonlabeled': []},
'peps': {'labeled': [], 'nonlabeled': []},
}
miscleav = []
# data for % labeled in input-file order
for ftype in ['peps', 'psms']:
for fn in ordered_fns:
labeldata[ftype]['labeled'].append(data[fn][ftype]['pass'])
labeldata[ftype]['nonlabeled'].append(data[fn][ftype]['fail'])
if ftype == 'psm':
miscleav.append(data[fn][ftype]['miscleav'])
maxmiss = int(${maxmiscleav})
# write to HTML template
with open("${report}") as fp:
main = Template(fp.read())
with open('qc.html', 'w') as fp:
fp.write(main.render(reportname='$custom_runName', filenames=ordered_fns, channels=ordered_chs,
labeldata=labeldata, isomeans=dict(isomeans), miscleav=miscleav, maxmiscleav=maxmiss))
"""
}
/*
* STEP 3 - Output Description HTML
process output_documentation {
publishDir "${params.outdir}/pipeline_info", mode: 'copy'
input:
file output_docs from ch_output_docs
output:
file "results_description.html"
script:
"""
markdown_to_html.r $output_docs results_description.html
"""
}
*/
/*
* Completion e-mail notification
*/
workflow.onComplete {
// Set up the e-mail variables
def subject = "[lehtiolab/nf-labelcheck] Successful: $workflow.runName"
if(!workflow.success){
subject = "[lehtiolab/nf-labelcheck] FAILED: $workflow.runName"
}
def email_fields = [:]
email_fields['version'] = workflow.manifest.version
email_fields['runName'] = custom_runName ?: workflow.runName
email_fields['success'] = workflow.success
email_fields['dateComplete'] = workflow.complete
email_fields['duration'] = workflow.duration
email_fields['exitStatus'] = workflow.exitStatus
email_fields['errorMessage'] = (workflow.errorMessage ?: 'None')
email_fields['errorReport'] = (workflow.errorReport ?: 'None')
email_fields['commandLine'] = workflow.commandLine
email_fields['projectDir'] = workflow.projectDir
email_fields['summary'] = summary
email_fields['summary']['Date Started'] = workflow.start
email_fields['summary']['Date Completed'] = workflow.complete
email_fields['summary']['Pipeline script file path'] = workflow.scriptFile
email_fields['summary']['Pipeline script hash ID'] = workflow.scriptId
if(workflow.repository) email_fields['summary']['Pipeline repository Git URL'] = workflow.repository
if(workflow.commitId) email_fields['summary']['Pipeline repository Git Commit'] = workflow.commitId
if(workflow.revision) email_fields['summary']['Pipeline Git branch/tag'] = workflow.revision
if(workflow.container) email_fields['summary']['Docker image'] = workflow.container
email_fields['summary']['Nextflow Version'] = workflow.nextflow.version
email_fields['summary']['Nextflow Build'] = workflow.nextflow.build
email_fields['summary']['Nextflow Compile Timestamp'] = workflow.nextflow.timestamp
// Render the TXT template
def engine = new groovy.text.GStringTemplateEngine()
def tf = new File("$baseDir/assets/email_template.txt")
def txt_template = engine.createTemplate(tf).make(email_fields)
def email_txt = txt_template.toString()
// Render the HTML template
def hf = new File("$baseDir/assets/email_template.html")
def html_template = engine.createTemplate(hf).make(email_fields)
def email_html = html_template.toString()
// Render the sendmail template
def smail_fields = [ email: params.email, subject: subject, email_txt: email_txt, email_html: email_html, baseDir: "$baseDir", mqcFile: false]
def sf = new File("$baseDir/assets/sendmail_template.txt")
def sendmail_template = engine.createTemplate(sf).make(smail_fields)
def sendmail_html = sendmail_template.toString()
// Send the HTML e-mail
if (params.email) {
try {
if( params.plaintext_email ){ throw GroovyException('Send plaintext e-mail, not HTML') }
// Try to send HTML e-mail using sendmail
[ 'sendmail', '-t' ].execute() << sendmail_html
log.info "[lehtiolab/nf-labelcheck] Sent summary e-mail to $params.email (sendmail)"
} catch (all) {
// Catch failures and try with plaintext
[ 'mail', '-s', subject, params.email ].execute() << email_txt
log.info "[lehtiolab/nf-labelcheck] Sent summary e-mail to $params.email (mail)"
}
}
// Write summary e-mail HTML to a file
def output_d = new File( "${params.outdir}/pipeline_info/" )
if( !output_d.exists() ) {
output_d.mkdirs()
}
def output_hf = new File( output_d, "pipeline_report.html" )
output_hf.withWriter { w -> w << email_html }
def output_tf = new File( output_d, "pipeline_report.txt" )
output_tf.withWriter { w -> w << email_txt }
c_reset = params.monochrome_logs ? '' : "\033[0m";
c_purple = params.monochrome_logs ? '' : "\033[0;35m";
c_green = params.monochrome_logs ? '' : "\033[0;32m";
c_red = params.monochrome_logs ? '' : "\033[0;31m";
if (workflow.stats.ignoredCountFmt > 0 && workflow.success) {
log.info "${c_purple}Warning, pipeline completed, but with errored process(es) ${c_reset}"
log.info "${c_red}Number of ignored errored process(es) : ${workflow.stats.ignoredCountFmt} ${c_reset}"
log.info "${c_green}Number of successfully ran process(es) : ${workflow.stats.succeedCountFmt} ${c_reset}"
}
if(workflow.success){
log.info "${c_purple}[lehtiolab/nf-labelcheck]${c_green} Pipeline completed successfully${c_reset}"
} else {
checkHostname()
log.info "${c_purple}[lehtiolab/nf-labelcheck]${c_red} Pipeline completed with errors${c_reset}"
}
}
def nfcoreHeader(){
// Log colors ANSI codes
c_reset = params.monochrome_logs ? '' : "\033[0m";
c_dim = params.monochrome_logs ? '' : "\033[2m";
c_black = params.monochrome_logs ? '' : "\033[0;30m";
c_green = params.monochrome_logs ? '' : "\033[0;32m";
c_yellow = params.monochrome_logs ? '' : "\033[0;33m";
c_blue = params.monochrome_logs ? '' : "\033[0;34m";
c_purple = params.monochrome_logs ? '' : "\033[0;35m";
c_cyan = params.monochrome_logs ? '' : "\033[0;36m";
c_white = params.monochrome_logs ? '' : "\033[0;37m";
return """ ${c_dim}----------------------------------------------------${c_reset}
${c_green},--.${c_black}/${c_green},-.${c_reset}
${c_blue} ___ __ __ __ ___ ${c_green}/,-._.--~\'${c_reset}
${c_blue} |\\ | |__ __ / ` / \\ |__) |__ ${c_yellow}} {${c_reset}
${c_blue} | \\| | \\__, \\__/ | \\ |___ ${c_green}\\`-._,-`-,${c_reset}
${c_green}`._,._,\'${c_reset}
${c_purple} lehtiolab/nf-labelcheck v${workflow.manifest.version}${c_reset}
${c_dim}----------------------------------------------------${c_reset}
""".stripIndent()
}
def checkHostname(){
def c_reset = params.monochrome_logs ? '' : "\033[0m"
def c_white = params.monochrome_logs ? '' : "\033[0;37m"
def c_red = params.monochrome_logs ? '' : "\033[1;91m"
def c_yellow_bold = params.monochrome_logs ? '' : "\033[1;93m"
if(params.hostnames){
def hostname = "hostname".execute().text.trim()
params.hostnames.each { prof, hnames ->
hnames.each { hname ->
if(hostname.contains(hname) && !workflow.profile.contains(prof)){
log.error "====================================================\n" +
" ${c_red}WARNING!${c_reset} You are running with `-profile $workflow.profile`\n" +
" but your machine hostname is ${c_white}'$hostname'${c_reset}\n" +
" ${c_yellow_bold}It's highly recommended that you use `-profile $prof${c_reset}`\n" +
"============================================================"
}
}
}
}
}